精英家教网 > 高中数学 > 题目详情
(1)|
a
|=3,|
b
|=4,且(
a
+2
b
)•(
a
-3
b
)=-93,求向量
a
b
的夹角
a
b

(2)设向量
OA
=(-1,-2),
OB
=(1,4),
OC
=(2,-4),在向量
OC
上是否存在点P,使得
PA
PB
,若存在,求出点P的坐标,若不存在,请说明理由.
分析:向量表示错误:请给修改,谢谢.
(1)由(
a
+2
b
)•(
a
-3
b
)=-93,可得
a
2
-
a
b
-6
b
2
=9-3×4×cos<
a
b
>-6×16=-93,解得cos<
a
b
>=
1
2
,可得<
a
b
>的值.
(2)假设在向量
OC
上存在点P(2x,-4x),使得
PA
PB
,则由
PA
PB
=0,解得x的值,从而得出结论.
解答:解:(1)∵|
a
|=3,|
b
|=4,且(
a
+2
b
)•(
a
-3
b
)=-93,∴
a
2
-
a
b
-6
b
2
=9-3×4×cos<
a
b
>-6×16=-93,
解得cos<
a
b
>=
1
2
,再根据cos<
a
b
>∈[0°,180°],∴<
a
b
>=60°.
(2)假设在向量
OC
上存在点P(2x,-4x),使得
PA
PB
,则由
PA
=(-1-x,-2+4x),
PB
=(1-2x 4+4x).
 而且
PA
PB
=(-1-x)(1-2x)+(-2+4x)(4+4x)=0,解得x=
1
2
,或x=-
9
10
(舍去).
故存在点P(1,-2)满足条件.
点评:本题主要考查两个向量的数量积的定义,两个向量垂直的性质,两个向量坐标形式的运算,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、下列程序运行后,a,b,c的值各等于什么?
(1)a=3              (2)a=3
b=-5                    b=-5
c=8                     c=8
a=b                     a=b
b=c                     b=c
PRINT  a,b,c          c=a
END              PRINT  a,b,c
END.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin
x
2
cos
x
2
+cos2
x
2
-
1
2
,△ABC三个内角A,B,C的对边分别为a,b,c.
( I)求f(x)的单调递增区间;
(Ⅱ)若f(B+C)=1,a=
3
,b=1
,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在(-∞,2]为增函数,且f(x+2)是R上的偶函数,若f(a)≤f(3),则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,关于x的不等式|x+2|+a-2>0(a∈R)的解集为A.
(1)分别求出当a=1和a=3时的集合A;
(2)设集合B={x|
3
sin(πx-
π
6
)+cos(πx-
π
6
)=0}
,若(CUA)∩B中有且只有三个元素,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•新余二模)本题是选做填空题,共5分,考生只能从两小题中选做一题,两题全做的,只计算第一小题
的得分.把答案填在答题 卷相应的位置.
(A)(参数方程与极坐标选讲)在极坐标系中,圆C的极坐标方程为ρ=2sinθ,过极点O的一条直线l与圆C相交于O、A两点,且∠AOX=45°,则OA=
2
2

(B)(不等式选讲)要使关于x的不等式|x-1|+|x-a|≤3在实数范围内有解,则a的取值范围是
[-2,4]
[-2,4]

查看答案和解析>>

同步练习册答案