精英家教网 > 高中数学 > 题目详情
已知f(x)=2x,g(x)=3x
(1)当x为何值时,f(x)=g(x)?
(2)当x为何值时,f(x)>1?f(x)=1?f(x)<1?
(3)当x为何值时,g(x)>3?g(x)=3?g(x)<3?
分析:(1)作出函数f(x),g(x)的图象,结合图象可得f(x)、g(x)的图象都过点(0,1),从而得出结论.
(2)数形结合可得当x为何值时,f(x)>1?f(x)=1?f(x)<1?
(3)数形结合可得当x为何值时,g(x)>3?g(x)=3?g(x)<3?
解答:解:(1)作出函数f(x),g(x)的图象,如图所示.
∵f(x),g(x)的图象都过点(0,1),且这两个图象只有一个公共点,∴当x=0时,f(x)=g(x)=1.
(2)由图可知,当x>0时,f(x)>1; 当x=0时,f(x)=1; 当x<0时,f(x)<1.
(3)由图可知:当x>1时,g(x)>3; 当x=1时,g(x)=3; 当x<1时,g(x)<3.
点评:本题主要考查指数函数的图象和性质的综合应用,体现了分类讨论、数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得
f(x1)f(x2)
=C
,则称函数f(x)在D上的几何平均数为C.已知f(x)=2x,x∈[1,2],则函数f(x)=2x在[1,2]上的几何平均数为(  )
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x可以表示成一个奇函数g(x)与一个偶函数h(x)之和,若关于x的不等式ag(x)+h(2x)≥0对于x∈[1,2]恒成立,则实数a的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大连一模)选修4-5:不等式选讲
已知f(x)=|2x-1|+ax-5(a是常数,a∈R)
(Ⅰ)当a=1时求不等式f(x)≥0的解集.
(Ⅱ)如果函数y=f(x)恰有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x+3,g(x)=4x-5,则使得f(h(x))=g(x)成立的h(x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)已知f(x)=2x+x,则f-1(6)=
2
2

查看答案和解析>>

同步练习册答案