精英家教网 > 高中数学 > 题目详情

下列命题:

①∀x∈R,不等式x2+2x>4x-3均成立;

②若log2x+logx2≥2,则x>1;

③“若ab>0且c<0,则”的逆否命题是真命题;

④若命题p:∀x∈R,x2+1≥1,命题q:∃x0∈R,xx0-1≤0,则命题p∧(綈q)是真命题.其中真命题为(  )

A.①②③                          B.①②④

C.①③④                          D.②③④

解析:由x2+2x>4x-3推得x2-2x+3=(x-1)2+2>0恒成立,故①正确;根据基本不等式可知要使不等式log2x+logx2≥2成立需要x>1,故②正确;由ab>0得0<,又c<0,可得,则可知其逆否命题为真命题,故③正确;命题p是真命题,命题q是真命题,所以p∧(綈q)为假命题.所以选A.

答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知下列命题:(1)已知函数f(x)=x+
p
x-1
(p为常数且p>0),若f(x)在区间(1,+∞)的最小值为4,则实数p的值为
9
4
; (2)?x∈[0,
π
2
],sinx+cosx>
2
;(3)正项等比数列{an}中:a4.a6=8,函数f(x)=x(x+a3)(x+a5)(x+a7),则f(0)=16
2
;(4)若数列{an}的前n项和为Sn=2n2-n+1,且bn=2an+1,则数列{bn}前n项和为Tn=4n2-n+2上述命题正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若f'(x0)=0,则函数f(x)在x=x0处有极值;
②m>0是方程
x2
m
+
y2
4
=1
表示椭圆的充要条件;
③若f(x)=(x2-8)ex,则f(x)的单调递减区间为(-4,2);
④A(1,1)是椭圆
x2
4
+
y2
3
=1
内一定点,F是椭圆的右焦点,则椭圆上存在点P,使得PA+2PF的最小值为3.
其中为真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=3sin(2x-
π
3
)
的图象关于直线x=
11π
12
对称;
②函数f(x)=
2
sin(2x+
π
4
)
f(x)在区间[
π
2
8
]
上是减函数;
③函数y=sin2x-
3
cos2x
的图象向左平移
π
3
个单位,得到y=2sin2x的图象;
④函数y=sinx+2|sinx|的值域为[1,3].
其中正确命题的序号为
①②
①②
(把你认为正确的都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若α、β是第一象限的角且α<β,则tanα<tanβ;
②存在实数α,使sinαcosα=1;
③y=sin(
2
-x)是偶函数;
④存在实数α,使sinα+cosα=
3
2

⑤x=
π
8
是函数y=sin(2x+
4
)的一条对称轴方程.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给定下列命题:①若k>0,则方程x2+2x-k=0有实数根;
②若x+y≠8,则x≠2或y≠6;
③“矩形的对角线相等”的逆命题;
④“若xy=0,则x、y中至少有一个为0”的否命题.
其中真命题的序号是
①②④
①②④

查看答案和解析>>

同步练习册答案