精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x2+3(a2+a)lnx-8ax
(Ⅰ)若x=3是f(x)的一个极值点求a的值;
(Ⅱ)若函数f(x)在其导函数f(x)′的单调区间上也是单调的,求a的取值范围.
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:计算题,函数的性质及应用,导数的综合应用
分析:(I)f′(x)=4x+
3(a2+a)
x
-8a=
4(x-a)2-a2+3a
x
,则f′(3)=4(3-a)2-a2+3a=0,验证求a;
(II)f′(x)=4x+
3(a2+a)
x
-8a=
4x2-8ax+3(a2+a)
x
,讨论f′(x)的单调性,从而求解.
解答: 解:(Ⅰ)f′(x)=4x+
3(a2+a)
x
-8a=
4x2-8ax+3(a2+a)
x

=
4(x-a)2-a2+3a
x

∵x=3是f(x)的一个极值,
∴f′(3)=4(3-a)2-a2+3a=0,
解得,a=4或a=3;
而当a=3时,f′(x)≥0,故不成立,
当a=4时,满足条件,
故a=4.
(II)f′(x)=4x+
3(a2+a)
x
-8a=
4x2-8ax+3(a2+a)
x

设g(x)=4x2-8ax+3(a2+a),△=16(a2-3a),
设g(x)=0的两根为x1,x2,(x1<x2),
(1)当△≤0,即0≤a≤3时,
∴f(x)单调递增,满足题意;
(2)当△>0,即a<0或a>3时,
①若x1<0<x2,则
3
4
(a2+a)<0,即-1<a<0,
此时,f(x)在(0,x2)上单调递减,
在(x2,+∞)上单调递增,
而f′(x)在(0,+∞)上单调递增,
故不满足题意,
②若x1<x2≤0,则
2a<0
3
4
(a2+a)≥0

解得a≤-1,
此时,f(x)在(0,+∞)上单调递增,满足题意;
③若0<x1<x2,则
2a>0
3
4
(a2+a)>0

则a>0,
此时,f(x)在(0,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增,不满足题意;
综上所述,a的取值范围为(-∞,-1]∪[0,3].
点评:本题考查了导数的综合应用及分类讨论的数学思想,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A是不等式组
x-3y+1≤0
x+y-3≤0
x≥1
所表示的平面区域内的一个动点,点B(-1,1),O为坐标原点,则
OA
OB
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将球的表面积扩大到原来的4倍,则其体积扩大到原来的(  )
A、2倍B、4倍C、8倍D、16倍

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,a,b,c分别是角A,B,C的对边,a=2sinA且
cosB
cosC
=-
b
2a+c

(Ⅰ)求角B的大小;
(Ⅱ)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,公比q=2,log2a1+log2a2+…+log2a10=35,则 a1+a2+…+a10=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,设
AB
=
a
AD
=
b
,AP的中点为S,SD的中点为R,RC的中点为Q,QB的中点为P,若
AP
=m
a
+n
b
,则m+n=(  )
A、
6
5
B、
8
7
C、
3
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设F是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点,A(a,b),P是双曲线右支上的动点.若|PF|+|PA|的最小值为3a,则该双曲线的离心率为(  )
A、
10
-1
B、1+
10
C、
1+
3
2
D、
1+
10
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x),当x≥0时,f(x)=
-x2,x∈[0,1)
1-|x-3|,x∈[1,+∞)
,则方程f(x)=
1
4
的所有解之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b满足
a-b≤1
a+b≥1
a-2b+3≥0
,则实数a的取值范围为
 

查看答案和解析>>

同步练习册答案