精英家教网 > 高中数学 > 题目详情

【题目】对于函数,有下列五个命题:

存在反函数,且与反函数图象有公共点,则公共点一定在直线上;

上有定义,则一定是偶函数;

是偶函数,且有解,则解的个数一定是偶数;

是函数的周期,则,也是函数的周期;

是函数为奇函数的充分不必要条件。

从中任意抽取一个,恰好是真命题的概率为 ( )

A.B.C.D.

【答案】B

【解析】

y=fx)存在反函数,且与反函数图象有公共点,则公共点不一定在直线y=x上,如函数fx=,反函数是其本身,公共点是整个函数图象;

y=fx)在R上有定义,则y=f|x|)一定是偶函数,因f|-x|=f|x|)对于任意x恒成立,故正确;

y=fx)是偶函数,且fx=0有解,则解的个数一定是偶数不正确,如y=x2,是偶函数,x2=0的解只有一个,不是偶数个;

TT≠0)是函数y=fx)的周期,则fx+T=fx),从而fx+nT=fx),则nTn∈N),也是函数y=fx)的周期;

⑤f0=0是函数y=fx)为奇函数的充分也不必要条件,不正确,fx=x2时,f0=0,而fx=x2是偶函数.

故正确的命题有2个,

则从中任意抽取一个,恰好是真命题的概率为

故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公园草坪上有一扇形小径(如图),扇形半径为,中心角为,甲由扇形中心出发沿以每秒2米的速度向快走,同时乙从出发,沿扇形弧以每秒米的速度向慢跑,记秒时甲、乙两人所在位置分别为,,通过计算,判断下列说法是否正确:

(1)当时,函数取最小值;

(2)函数在区间上是增函数;

(3)若最小,则

(4)上至少有两个零点;

其中正确的判断序号是______(把你认为正确的判断序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),曲线的参数方程为为参数),直线与曲线交于两点.

(1)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求曲线的极坐标方程;

(2)若,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,定义为两点的“切比雪夫距离”,又设点上任意一点,称的最小值为点到直线的“切比雪夫距离”,记作,给出四个命题,正确的是________.

①对任意三点,都有

到原点的“切比雪夫距离”等于的点的轨迹是正方形;

已知点和直线,则

定点,动点满足,则点的轨迹与直线为常数)有且仅有个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是同一平面上不共线的四点,若存在一组正实数,使得,则三个角( )

A. 都是钝角B. 至少有两个钝角

C. 恰有两个钝角D. 至多有两个钝角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图被称为“中华第一图”.从孔庙大成殿梁柱,到楼观台、三茅宫标记物;从道袍、卦摊、中医、气功、武术到韩国国旗,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分可表示为,设点,则的最大值与最小值之差是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为正常数),且函数的图像在轴上的截距相等;

1)求的值;

2)若为常数),试讨论函数的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了人,他们年龄的频数分布及支持生育二胎人数如下表:

年龄

频数

支持“生二胎”

1)由以上统计数据填下面列联表,并问是否有的把握认为以岁为分界点对“生育二胎放开”政策的支持度有差异;

年龄不低于岁的人数

年龄低于岁的人数

合计

支持

不支持

合计

2)若对年龄在的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下图是四面体及其三视图,的中点,的中点.

1)求四面体的体积;

2)求与平面所成的角;

查看答案和解析>>

同步练习册答案