精英家教网 > 高中数学 > 题目详情

【题目】一个口袋里装有大小相同的5个小球,其中红色两个,其余3个颜色各不相同现从中任意取出3个小球,其中恰有2个小球颜色相同的概率是______;若变量X为取出的三个小球中红球的个数,则X的数学期望______

【答案】

【解析】

现从中任意取出3个小球,基本事件总数,其中恰有2个小球颜色相同包含的基本事件个数,由此能求出其中恰有2个小球颜色相同的概率;若变量X为取出的三个小球中红球的个数,则X的可能取值为012,分别求出相应的概率,由此能求出数学期望

解:一个口袋里装有大小相同的5个小球,其中红色两个,其余3个颜色各不相同.

现从中任意取出3个小球,

基本事件总数

其中恰有2个小球颜色相同包含的基本事件个数

其中恰有2个小球颜色相同的概率是

若变量X为取出的三个小球中红球的个数,则X的可能取值为012

数学期望

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,离心率,且短轴长为4.

求椭圆的方程;

已知,若直线l与圆相切,且交椭圆ECD两点,记的面积为,记的面积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设点,定义,其中为坐标原点,对于下列结论:

符合的点的轨迹围成的图形面积为8

设点是直线:上任意一点,则

设点是直线:上任意一点,则使得“最小的点有无数个”的充要条件是

设点是椭圆上任意一点,则

其中正确的结论序号为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(第三季)亮点颇多,在“人生自有诗意”的主题下,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《沁园春·长沙》、《蜀道难》、《敕勒歌》、《游子吟》、《关山月》、《清平乐·六盘山》排在后六场,且《蜀道难》排在《游子吟》的前面,《沁园春·长沙》与《清平乐·六盘山》不相邻且均不排在最后,则后六场的排法有__________种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人同时参加一个外贸公司的招聘,招聘分笔试与面试两部分,先笔试后面试.甲笔试与面试通过的概率分别为0.8,0.5,乙笔试与面试通过的概率分别为0.8,0.4,且笔试通过了才能进入面试,面试通过则直接招聘录用,两人笔试与面试相互独立互不影响.

(1)求这两人至少有一人通过笔试的概率;

(2)求这两人笔试都通过却都未被录用的概率;

(3)记这两人中最终被录用的人数为X,X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高一年级某个班分成7个小组,利用假期参加社会公益服务活动每个小组必须全员参加,参加活动的次数记录如下:

组别

参加活动次数

3

2

4

3

3

4

2

求该班的7个小组参加社会公益服务活动数的中位数及与平均数v

从这7个小组中随机选出2个小组在全校进行活动汇报,求“选出的2个小组参加社会公益服务活动次数相等”的概率.

小组每组有4名同学,小组有5名同学,记“该班学参加社会公益服务活动的平均次数”为,写出v的大小关系结论不要求证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面ABCD,为等边三角形,,M为AC的中点.

证明:平面PCD;

若PD与平面PAC所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左焦点为,且点C上.

C的方程;

设点P关于x轴的对称点为点不经过P点且斜率为的直线1C交于AB两点,直线PAPB分别与x轴交于点MN,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象关于原点对称,其中为常数.

1)求的值;

2)当时, 恒成立,求实数的取值范围;

3若关于的方程上有解,求的取值范围.

查看答案和解析>>

同步练习册答案