精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱(侧棱垂直底面)中,M、N分别是BC、AC1中点,AA1=2,AB=,AC=AM=1.

(1)证明:MN∥平面A1ABB1
(2)求几何体C—MNA的体积.

(1)证MN∥A1B ;(2).

解析试题分析:(1)因为,M、N分别是BC、AC1中点,连A1B, A1C,则咋三角形A1BC中,由三角形中位线定理知,MN∥A1B ,又平面A1ABB1,所以,MN∥平面A1ABB1;   6分
(2)因为,侧棱垂直底面,所以侧面垂直于底面。由N是AC1中点,取AC的中点G,则NG垂直于底面,即为三棱锥C—MNA,亦即三棱锥N—AMC的高=AA1,而AA1=2,AB=
AC=AM=1,由三角形中线定理
所以,CM=BM=,.               12分
考点:本题主要考查立体几何中的平行关系、体积的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用空间向量,省去繁琐的证明,也是解决立体几何问题的一个基本思路。注意运用转化与化归思想,将空间问题转化成平面问题。本题体积计算应用了“等积法”。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知长方形ABCD中,AB=2,A1,B1分别是AD,BC边上的点,且AA1=BB1="1," E,F分别为B1D与AB的中点. 把长方形ABCD沿直线折成直角二面角,且.

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥A-BCD中,△ABD和△BCD是两个全等的等腰直角三角形,O为BD的中点,且AB=AD=CB=CD=2,AC=

(1)当时,求证:AO⊥平面BCD;
(2)当二面角的大小为时,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.

(Ⅰ) 证明:PA⊥BD;
(Ⅱ) 若PD=AD,求二面角A-PB-C的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正方体是底对角线的交点.

求证:(Ⅰ)∥面
(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知斜三棱柱,侧面与底面垂直,∠,且.

(1)试判断与平面是否垂直,并说明理由;
(2)求侧面与底面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形是正方形,为对角线的交点,的中点;

(1)求证:
(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O为AB的中点.

(1)求证:OC⊥DF;
(2)求平面DEF与平面ABC相交所成锐二面角的大小;
(3)求多面体ABC—FDE的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,E为AB的中点,F为CC1的中点.

(1)证明:B F//平面E CD1
(2)求二面角D1—EC—D的余弦值.

查看答案和解析>>

同步练习册答案