精英家教网 > 高中数学 > 题目详情
已知f(x)=lnx+
x-a
x
,a是常数且a>0,求当f(x)∈[1,2]时,f(x)的最小值为
1
2
的a的值?
考点:函数的最值及其几何意义
专题:函数的性质及应用
分析:判断出f(x)在x∈[1,2]单调递增,得出f(1)=
1
2
,求解即可.
解答: 解:∵f(x)=lnx+
x-a
x
,a是常数且a>0,
∴f(x)=lnx+1-
a
x
,a是常数且a>0,
∴f(x)在x∈[1,2]单调递增,
∵f(x)的最小值为
1
2

∴f(1)=
1
2

即ln1+1-a=
1
2

解得:a=
1
2
点评:本题考查了综合函数的单调性,运用求解参变量的值,属于中档题,关键是根据解析式能够熟练的判断单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=x+ln(x+
1+x2
),若对于任意的实数a和b,都有f(a)+f(b)>0,则必有(  )
A、a+b>0
B、a-b>0
C、a+b<0
D、a-b<0

查看答案和解析>>

科目:高中数学 来源: 题型:

cos480°=(  )
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的方程为x2-
y2
3
=1,直线m的方程为x=
1
2
,过双曲线的右焦点F的直线l与双曲线的右支相交于点P,Q两点,以PQ为直径的圆与直线m相交于M,N,记劣弧MN的长度为n,则
n
|PQ|
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设F是抛物线y2=16x的焦点,A,B,C在抛物线上,且横坐标分别是x1,x2,x3,则下列说法正确的有
 

①若
FA
+
FB
+
FC
=
0
,则|
FA
|+|
FB
|+|
FC
|=24;
②若x1+x3=2x2,则|
FA
|,|
FB
|,|
FC
|成等差数列;
③若直线AB经过点F,则以AB为直径的圆与直线x=-4相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-lnx,g(x)=
lnx
x
,a∈R
(1)当a=g′(1)时,讨论函数f(x)的单调区间
(2)当x∈[0,e]时,是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为某图形的正视图、侧视图及俯视图,请画出原图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l:y=2x+2,若l与椭圆x2+
y2
4
=1的交点为A、B,点P为椭圆上的动点,则使△PAB的面积为
2
-1的点P的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

求当
a
b
满足什么条件时,|
a
+
b
|=|
a
-
b
|.

查看答案和解析>>

同步练习册答案