精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数的极值;

(2)若函数有两个零点,且,证明:.

【答案】(1)答案见解析;(2)证明见解析.

【解析】分析:(1)求出,分两种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,根据单调性可得函数的极值;(2)为函数零点,可得,要证,只需证,令上是增函数,∴从而可得结论.

详解(1)函数的定义域为.

.

时,上是减函数,所以上无极值;

时,若上是减函数.

上是增函数,

故当时,上的极小值为.

(2)证明:当时,,可证明

由(1)知,上是减函数,在上是增函数,是极值点,

为函数零点,所以,要证,只需证.

,又

上是增函数,∴,∴

,即得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商品要了解年广告费(单位:万元)对年利润(单位:万元)的影响,对近4年的年广告费和年利润数据作了初步整理,得到下面的表格:

广告费

2

3

4

5

年利润

26

39

49

54

(Ⅰ)用广告费作解释变量,年利润作预报变量,建立关于的回归直线方程;

(Ⅱ)根据(Ⅰ)的结果预报广告费用为6万元时的年利润.

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),若以原点为极点,轴正半轴为极轴建立极坐标系,已知圆的极坐标方程为,设是圆上任一点,连结并延长到,使.

(1)求点轨迹的直角坐标方程;

(2)若直线与点轨迹相交于两点,点的直角坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为平面内不共线的三点,表示的面积

(1)若

(2)若,证明:

(3)若,其中,且坐标原点恰好为的重心,判断是否为定值,若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费元,未租出的车每辆每月需要维护费.

1)当每辆车的月租金定为元时,能租出多少辆车?

2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的有________(只填序号)

①若直线与平面有无数个公共点,则直线在平面内;

②若直线l上有无数个点不在平面α,lα;

③若两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;

④若直线l与平面α平行,l与平面α内的直线平行或异面;

⑤若平面α∥平面β,直线aα,直线bβ,则直线ab.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数恒过定点

(1)求实数

(2)在(1)的条件下,将函数的图象向下平移个单位,再向左平移个单位后得到函数,设函数的反函数为,求的解析式.

(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列的公比,前项和为,且满足.分别是一个等差数列的第1项,第2项,第5项.

(1)求数列的通项公式;

(2)设,求数列的前项和

(3)若的前项和为,且对任意的满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中, (0<λ<1),cosC= ,cos∠ADC=
(1)若AC=5.BC=7,求AB的大小;
(2)若AC=7,BD=10,求△ABC的面积.

查看答案和解析>>

同步练习册答案