精英家教网 > 高中数学 > 题目详情
12.空间四点A,B,C,D满足|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=3,|$\overrightarrow{CD}$|=3$\sqrt{6}$,|$\overrightarrow{DA}$|=7,则$\overrightarrow{AC}$•$\overrightarrow{BD}$的值为0.

分析 先把ABCD看成是平面图形,过B作BE垂直AC,过D作DF垂直AC,运用勾股定理,可得E,F重合,再将图形沿AC或BD折起,便是空间图形,运用线面垂直的判定和性质,可得AC⊥BD,再由向量数量积的性质,即可得到答案.

解答 解:由|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=3,|$\overrightarrow{CD}$|=3$\sqrt{6}$,|$\overrightarrow{DA}$|=7,
根据数据可知AB2+CD2=BC2+DA2=58,
BC2-AB2=CD2-DA2
先把ABCD看成是平面图形,
过B作BE垂直AC,过D作DF垂直AC,
则AB2=AE2+BE2,BC2=CE2+BE2
则BC2-AB2=CE2-AE2
同理CD2-DA2=CF2-AF2,即CF2-AF2=CE2-AE2
又因为A,E,F,C在一条直线上,
所以满足条件的只能是E,F重合,即有AC垂直BD,
再将图形沿AC或BD折起,便是空间图形,
由AC⊥BE,AC⊥DE,即有AC⊥平面BDE,则AC⊥BD,
即$\overrightarrow{AC}$•$\overrightarrow{BD}$=0.
故答案为:0.

点评 本题考查空间直线和平面的位置关系,以及向量的数量积的性质,考查空间想象能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}的公差d不为零,其前n项和为Sn,S5=70,且a2,a7,a22成等比数列,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=$\frac{1}{{S}_{n}}$-$\frac{1}{{2}^{n}}$,数列{bn}的前n项和为Tn,求证:Tn<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)=x+$\frac{1}{x}$-2(x>0),则f(x)的最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若函数f(x)=2sin(ωx+$\frac{π}{3}$),且f(α)=-2f,(β)=0,|α-β|的最小值为$\frac{3π}{4}$,求:
(1)正数ω的值;
(2)函数f(x)的最大值及取得最大值时x的集合;
(3)函数f(x)的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)是定义域为R的奇函数,且f(x+2)=f(x),当0≤x≤1时,f(x)=x,则f(7.5)=-0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={-4,a,a2},B={a+4,-a,4},求适合下列条件的a值:
(1)4∈A∩B;
(2){4}=A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若1+sinθ$\sqrt{si{n}^{2}θ}$+cosθ$\sqrt{co{s}^{2}θ}$=0成立,则θ不可能是(  )
A.第二、三、四象限角B.第一、二、三象限角
C.第一、二、四象限角D.第一、三、四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.$\frac{26}{3}$π是(  )
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2cosx(sinx+cosx).
(Ⅰ)求f($\frac{3π}{4}$);
(Ⅱ)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

同步练习册答案