精英家教网 > 高中数学 > 题目详情

【题目】某同学自制了一套数学实验模型,该模型三视图如图所示.模型内置一个与其各个面都相切的球,该模型及其内球在同一方向有开口装置.实验的时候,随机往模型中投掷大小相等,形状相同的玻璃球,通过计算落在球内的玻璃球数量,来估算圆周率的近似值.已知某次实验中,某同学一次投掷了个玻璃球,请你估算落在球内的玻璃球数量(其中)( )

A.B.C.D.

【答案】B

【解析】

作出几何体的直观图,并计算出几何体的体积及其内切球的体积,然后利用几何概型的概率公式可计算得出结果.

由三视图还原该几何体的直观图如下图所示:

该几何体是棱长为的正四面体,其体积为

表面积为

正四面体的内切球半径为,内切球体积为

个玻璃球落在球内的玻璃球数量为个,

由几何概型的概率公式可得,得.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点为,焦点.

1)求抛物线的方程;

2)过作直线交抛物线于两点.若直线分别交直线两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在统计学中,同比增长率一般是指和去年同期相比较的增长率,环比增长率一般是指和前一时期相比较的增长率.2020229日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据2019年居民消费价格月度涨跌幅度统计折线图,下列说法正确的是( )

A.2019年我国居民每月消费价格与2018年同期相比有涨有跌

B.2019年我国居民每月消费价格中2月消费价格最高

C.2019年我国居民每月消费价格逐月递增

D.2019年我国居民每月消费价格3月份较2月份有所下降

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的两顶点分别为为双曲线的一个焦点,为虚轴的一个端点,若在线段(不含端点)上存在两点,使得,则双曲线的渐近线斜率的平方的取值范围是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数的图象,需将函数的图象上所有的点(

A.向右平移个单位长度后,再将图象上所有点的横坐标缩小到原来的,纵坐标不变

B.向左平移个单位长度后,再将图象上所有点的横坐标缩小到原来的,纵坐标不变

C.向左平移个单位长度后,再将图象上所有点的横坐标伸长到原来的2倍,纵坐标不变

D.向右平移个单位长度后,再将图象上所有点的横坐标伸长到原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和,对任意,都有为常数)

(1)当时,求

(2)当时,

(ⅰ)求证:数列是等差数列;

(ⅱ)若对任意,必存在使得,已知,且,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们听到的美妙弦乐,不是一个音在响,而是许多个纯音的合成,称为复合音.复合音的响度是各个纯音响度之和.琴弦在全段振动,产生频率为的纯音的同时,其二分之一部分也在振动,振幅为全段的,频率为全段的2倍;其三分之一部分也在振动,振幅为全段的,频率为全段的3倍;其四分之一部分也在振动,振幅为全段的,频率为全段的4倍;之后部分均忽略不计.已知全段纯音响度的数学模型是函数为时间,为响度),则复合音响度数学模型的最小正周期是_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC所对应的边分别为abc

)若abc成等差数列,证明:sinA+sinC=2sinA+C);

)若abc成等比数列,求cosB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某“芝麻开门”娱乐活动中,共有扇门,游戏者根据规则开门,并根据打开门的数量获取相应奖励.已知开每扇门相互独立,且规则相同,开每扇门的规则是:从给定的把钥匙(其中有且只有把钥匙能打开门)中,随机地逐把抽取钥匙进行试开,钥匙使用后不放回.若门被打开,则转为开下一扇门;若连续次未能打开,则放弃这扇门,转为开下一扇门;直至扇门都进行了试开,活动结束.

1)设随机变量为试开第一扇门所用的钥匙数,求的分布列及数学期望

2)求恰好成功打开扇门的概率.

查看答案和解析>>

同步练习册答案