精英家教网 > 高中数学 > 题目详情

【题目】已知函数为实数).

1)当时,判断函数的单调性,并用定义证明;

2)根据的不同取值,讨论的奇偶性,并说明理由.

【答案】(1)定义域单调递增,证明见解析;(2)见解析

【解析】

1时,,设,计算得到答案.

2)计算,根据之间的关系求得.

1a0时,fx,函数单调递增.

x1x2fx1)﹣fx2

x1x2,∴220fx1)﹣fx2)>0

fx)在定义域单调递增

2f(﹣x

①当a=﹣1时,f(﹣x)=fx),即fx)为偶函数;

②当a1时,f(﹣x)=﹣fx),即为奇函数;

③当则a≠1a1时,f(﹣xfx)且f(﹣xfx),即非奇非偶函数.

综上所述:时为偶函数;时为奇函数;时为非奇非偶函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列满足

1)设,证明是等差数列;

2)求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)当时,求函数上的值域;

(2)若函数上的最小值为3,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】行了一次水平测试。用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究。经统计成绩的分组及各组的频数如下:231015128.

)频率分布表

分组

频数

频率

2

3

10

15

12

8

合计

50

频率分布直方图为

)完成样本的频率分布表;画出频率分直方图;

)估计成绩在85分以下的学生比例;

)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列的公差不为0是其前项和,给出下列命题:

①若,且,则都是中的最大项;

②给定,对一切,都有

③若,则中一定有最小项;

④存在,使得同号.

其中正确命题的个数为(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】偶函数fx)(x∈R)满足:f﹣4=f1=0,且在区间[03][3+∞)上分别递减和递增,则不等式x3fx)<0的解集为( )

A.﹣∞﹣44+∞

B.﹣4﹣114

C.﹣∞﹣4﹣10

D.﹣∞﹣4﹣1014

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数.

1)求的值;

2)若函数在区间上单调递增,求实数的取值范围.

3)当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为,其离心率,焦距为4.

(Ⅰ)求椭圆的方程;

(Ⅱ)若是椭圆上不重合的四个点,且满足,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数().

(1)判断函数的奇偶性并说明理由;

(2)是否存在实数,使得当的定义域为,值域为?若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案