分析 (1)由题意,△CBM是等边三角形,取CM的中点E,连接BE,则BE⊥CM,证明AM⊥平面BMC,可得平面ABMD⊥平面BMC,利用O是BM的中点,可得CO⊥BM,即可证明CO⊥平面ABMD;
(2)点D到平面AMC的距离等于点B到平面AMC的距离的一半,即可求点D到平面AMC的距离.
解答 (1)证明:由题意,△CBM是等边三角形,取CM的中点E,连接BE,则BE⊥CM,
∴平面AMC⊥平面BMC,平面AMC∩平面BMC=CM,
∴BE⊥平面AMC,
∴BE⊥AM,
∵AM⊥BM,BE∩BM=B,
∴AM⊥平面BMC,
∴平面ABMD⊥平面BMC,
∵O是BM的中点,
∴CO⊥BM,
∴CO⊥平面ABMD;
(2)解:连接BD交AM于F,则△FDM∽△FBA,
∴BF=2DF,
∴点D到平面AMC的距离等于点B到平面AMC的距离的一半,即为$\frac{1}{2}$BE,
∵△CBM是边长为1的等边三角形,
∴点D到平面AMC的距离是$\frac{\sqrt{3}}{4}$.
点评 本题考查线面垂直、平面与平面垂直,考查点D到平面AMC的距离,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{26}}{2}$ | B. | $\frac{13}{5}$ | C. | $\sqrt{10}$ | D. | $\sqrt{17}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com