【题目】f(x)是定义在D上的函数,若存在区间[m,n]D,使函数f(x)在[m,n]上的值域恰为[km,kn],则称函数f(x)是k型函数.给出下列说法:①f(x)=3﹣ 不可能是k型函数; ②若函数y=﹣ x2+x是3型函数,则m=﹣4,n=0;
③设函数f(x)=x3+2x2+x(x≤0)是k型函数,则k的最小值为 ;
④若函数y= (a≠0)是1型函数,则n﹣m的最大值为 .
下列选项正确的是( )
A.①③
B.②③
C.②④
D.①④
【答案】C
【解析】解:对于①,f(x)的定义域是{x|x≠0},且f(2)=3﹣ =1,f(4)=3﹣ =2, ∴f(x)在[2,4]上的值域是[1,2],f(x)是 型函数,
∴①错误;
对于②,y=﹣ x2+x是3型函数,即﹣ x2+x=3x,解得x=0,或x=﹣4,∴m=﹣4,n=0,
∴②正确;
对于③,f(x)=x3+2x2+x(x≤0)是k型函数,则x3+2x2+x=kx有二不等负实数根,
即x2+2x+(1﹣k)=0有二不等负实数根,
∴ ,解得0<k<1,
∴③错误;
对于④,y= (a≠0)是1型函数,即(a2+a)x﹣1=a2x2 , ∴a2x2﹣(a2+a)x+1=0,
∴方程的两根之差x1﹣x2= = =
= ≤ ,即n﹣m的最大值为 ,∴④正确.
综上,正确的命题是②④.
故选:C.
根据题目中的新定义,结合函数与方程的知识,逐一判定命题①②③④是否正确,从而确定正确的答案.
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,Sn=2n﹣an(n∈N*).
(1)计算a2 , a3 , a4 , 并由此猜想通项公式an;
(2)用数学归纳法证明(1)中的猜想.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax2+(b﹣1)x+3.
(1)若不等式f(x)>0的解为(﹣1, ),求不等式bx2﹣3x+a≤0的解集;
(2)若f(1)=4,a>0,b>0,求ab的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个不透明的袋子装有4个完全相同的小球,球上分别标有数字为0,1,2,2,现甲从中摸出一个球后便放回,乙再从中摸出一个球,若摸出的球上数字大即获胜(若数字相同则为平局),则在甲获胜的条件下,乙摸1号球的概率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=1+lnx﹣ ,其中k为常数.
(1)若k=0,求曲线y=f(x)在点(1,f(1))处的切线方程.
(2)若k=5,求证:f(x)有且仅有两个零点;
(3)若k为整数,且当x>2时,f(x)>0恒成立,求k的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,A、B、C是三角形的三内角,a、b、c是三内角对应的三边,已知b2 , a2 , c2成等差数列.
(1)求cosA的最小值;
(2)若a=2,当A最大时,△ABC面积的最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g(x)=a﹣x2( ≤x≤e,e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com