【题目】已知点到点的距离与点到直线的距离相等.
(1)求点的轨迹方程;
(2)设点的轨迹为曲线,过点且斜率为1的直线与曲线相交于不同的两点,,为坐标原点,求的面积.
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若在区间上不是单调函数,求实数的范围;
(2)若对任意,都有恒成立,求实数的取值范围;
(3)当时,设,对任意给定的正实数,曲线上是否存在两点,,使得是以(为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在轴上?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知, ,其中是自然常数, .
(1)当时,求的极值,并证明恒成立;
(2)是否存在实数,使的最小值为 ?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选出了三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.某学校为了了解高一年级200名学生选考科目的意向,随机选取20名学生进行了一次调查,统计选考科目人数如下表:
性别 | 选考方案确定情况 | 物理 | 化学 | 生物 | 历史 | 地理 | 政治 |
男生 | 选考方案确定的有5人 | 5 | 5 | 2 | 1 | 2 | 0 |
选考方案待确定的有7人 | 6 | 4 | 3 | 2 | 4 | 2 | |
女生 | 选考方案确定的有6人 | 3 | 5 | 2 | 3 | 3 | 2 |
选考方案待确定的有2人 | 1 | 2 | 1 | 0 | 1 | 1 |
(1)在选考方案确定的男生中,同时选考物理、化学、生物的人数有多少?
(2)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义函数,(0,)为型函数,共中.
(1)若是型函数,求函数的值域;
(2)若是型函数,求函数极值点个数;
(3)若是型函数,在上有三点A、B、C横坐标分別为、、,其中<<,试判断直线AB的斜率与直线BC的斜率的大小并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在2019年的自主招生笔试成绩(满分200分)中,随机抽取100名考生的成绩,按此成绩分成五组,得到如下的频率分布表:
组号 | 分组 | 频数 | 频率 |
第一组 | 15 | ||
第二组 | 25 | 0.25 | |
第三组 | 30 | 0.3 | |
第四组 | |||
第五组 | 10 | 0.1 |
(1)求频率分布表中,,的值;
(2)估计笔试成绩的平均数及中位数(同一组中的数据用该组区间的中点值作代表);(精确到0.1)
(3)若从第四组、第五组的学生中按组用分层抽样的方法抽取6名学生参加面试,用简单随机抽样方法从6人中抽取2人作为正、副小组长,求“抽取的2人为同一组”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线l:y=2x+2,若l与椭圆 的交点为A,B,点P为椭圆上的动点,则使△PAB的面积为 的点P的个数为( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,AC∩BD=O,△PAC是边长为2的等边三角形,.
(1)求四棱锥P-ABCD的体积VP-ABCD;
(2)在线段PB上是否存在一点M,使得CM∥平面BDF?如果存在,求的值,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面命题正确的是( )
A.“”是“”的 充 分不 必 要条件
B.命题“若,则”的 否 定 是“ 存 在,则”.
C.设,则“且”是“”的必要而不充分条件
D.设,则“”是“”的必要 不 充 分 条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com