精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AEBF所成角的余弦值为(  )

A. B. C. D.

【答案】D

【解析】

D为原点,DAx轴,DCy轴,DD1z轴,建立空间直角坐标系,再利用向量法求出异面直线AEBF所成角的余弦值.

D为原点,DAx轴,DCy轴,DD1z轴,建立空间直角坐标系,

设正方体ABCD﹣A1B1C1D1中棱长为2,E,F分别是C1D1,CC1的中点,

A(2,0,0),E(0,1,2),B(2,2,0),F(0,2,1),

=(﹣2,1,2),=(﹣2,0,1),

设异面直线AEBF所成角的平面角为θ,

cosθ= ,∴异面直线AEBF所成角的余弦值为

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一半径为的水轮如图所示,水轮圆心距离水面;已知水轮按逆时针做匀速转动,每转一圈,如果当水轮上点从水中浮现时(图中点)开始计算时间.

(1)以水轮所在平面与水面的交线为轴,以过点且与水面垂直的直线为轴,建立如图所示的直角坐标系,将点距离水面的高度表示为时间的函数;

(2)点第一次到达最高点大约要多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 (a∈R,e为自然对数的底数),若曲线y=sinx上存在点(x0 , y0)使得f(f(y0))=y0 , 则a的取值范围是(
A.[1,e]
B.[e1﹣1,1]
C.[1,e+1]
D.[e1﹣1,e+1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点
(1)求椭圆C的离心率:
(2)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且 ,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于直线对称,且圆心在轴上.

(1)求的标准方程;

(2)已经动点在直线上,过点的两条切线,切点分别为.

①记四边形的面积为,求的最小值;

②证明直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为 ;以D为起点,其余顶点为终点的向量分别为 .若m、M分别为( + + )( + + )的最小值、最大值,其中{i,j,k}{1,2,3,4,5},{r,s,t}{1,2,3,4,5},则m、M满足(
A.m=0,M>0
B.m<0,M>0
C.m<0,M=0
D.m<0,M<0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,,内角的平分线的长为7,且,则 _____的长是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1 , a2 , a3 , …满足an+1=f(an),n∈N*
(1)若a1=﹣c﹣2,求a2及a3
(2)求证:对任意n∈N* , an+1﹣an≥c;
(3)是否存在a1 , 使得a1 , a2 , …,an , …成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=sin(2x+φ)的图象沿x轴向左平移 个单位后,得到一个偶函数的图象,则φ的一个可能的值为(
A.
B.
C.0
D.-

查看答案和解析>>

同步练习册答案