精英家教网 > 高中数学 > 题目详情

【题目】如图,在斜三棱柱中,平面平面,均为正三角形,EAB的中点.

(Ⅰ)证明:平面

(Ⅱ)求斜三棱柱截去三棱锥后剩余部分的体积.

【答案】(Ⅰ)见解析;(Ⅱ)

【解析】

(Ⅰ)要证明线面平行,需先证明线线平行,所以连接,交于点M,连接ME,证明

(Ⅱ)由题意可知点到平面ABC的距离等于点到平面ABC的距离,根据体积公式剩余部分的体积是.

(Ⅰ)如图,连接,交于点M,连接ME,则

因为平面平面,所以平面

(Ⅱ)因为平面ABC,所以点到平面ABC的距离等于点到平面ABC的距离.

如图,设OAC的中点,连接OB因为为正三角形,所以

又平面平面,平面平面,所以平面ABC

所以点到平面ABC的距离,故三棱锥的体积为

而斜三棱柱的体积为

所以剩余部分的体积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点是线段上的动点,则下列说法正确的是(

A.无论点上怎么移动,都有

B.当点移动至中点时,才有相交于一点,记为点,且

C.无论点上怎么移动,异面直线所成角都不可能是

D.当点移动至中点时,直线与平面所成角最大且为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处有极值,且,则称为函数F”.

1)设函数.

①当时,求函数的极值;

②若函数存在F,求k的值;

2)已知函数ab)存在两个不相等的F,且,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥P-ABC中,平面PAB平面ABCABC是边长为的等边三角形,,点OM分别是ABBC的中点.

1)证明:AC//平面POM

2)求点B到平面POM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

1)经计算估计这组数据的中位数;

2)现按分层抽样从质量为的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在内的概率.

3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:

A:所有芒果以10/千克收购;

B:对质量低于250克的芒果以2/个收购,高于或等于250克的以3/个收购,通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某鲜花店根据以往某品种鲜花的销售记录,绘制出日销售量的频率分布直方图,如图所示.将日销售量落入各组区间的频率视为概率,且假设每天的销售量相互独立.

(1)求在未来的连续4天中,有2天的日销售量低于100枝且另外2天不低于150枝的概率;

(2)用表示在未来4天里日销售量不低于100枝的天数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生文科、理科进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按照分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.

理科方向

文科方向

总计

110

50

总计

1)根据已知条件完成下面列联表,并据此判断是否有99%的把握认为是否为“文科方向”与性别有关?

2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“文科方向”的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.

参考公式:,其中.

参考临界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的菱形,的中点,的中点,点在线段上,且

(1)求证:平面

(2)若平面底面ABCD,且,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856310)

已知函数f(x)=x+ln x(a∈R).

(Ⅰ)当a=2时, 求函数f(x)的单调区间;

(Ⅱ)若关于x的函数g(x)=f(x)+ln x+2e(e为自然对数的底数)有且只有一个零点,求实数a的值.

查看答案和解析>>

同步练习册答案