精英家教网 > 高中数学 > 题目详情
3.光线由点A(-1,4)射出,遇到直线l:2x-3y-6=0后被反射,已知点$B(3,\frac{62}{13})$在反射光线上,则反射光线所在的直线方程为13x-26y+85=0.

分析 求出点(-1,4)关于直线l1:2x+3y-6=0的对称点的坐标,利用两点式方程求出入射光线所在的直线方程.

解答 解:设点(-1,4)关于直线l1:2x-3y-6=0的对称点的坐标为(a,b),
则 $\left\{\begin{array}{l}{\frac{b-4}{a+1}•\frac{2}{3}=-1}\\{2•\frac{a-1}{2}-3•\frac{b+4}{2}-6=0}\end{array}\right.$,
解得:a=$\frac{29}{13}$,b=-$\frac{28}{13}$,
又由反射光线经过点B(3,$\frac{62}{13}$),
故反射光线的方程为:$\frac{y+\frac{28}{13}}{\frac{62}{13}+\frac{28}{13}}$=-$\frac{x-\frac{29}{13}}{3-\frac{29}{13}}$,
即:13x-26y+85=0,
故答案为:13x-26y+85=0.

点评 对称点的坐标的求法:利用垂直平分解答,本题是通过特殊直线特殊点处理,比较简洁,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.
(1)若|AF|=4,求点A的坐标;
(2)求线段AB的长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知x>0,y>0,lg2x+lg8y=lg2,则$\frac{x+y}{xy}$的最小值是$2\sqrt{3}+4$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若命题“存在实数x,使得(a-2)x2+2(a-2)x-4≥0成立”是假命题,则实数a的取值范围是(-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.任意连接长方体四个顶点构成的四面体,其最多可以有几个面是直角三角形(  )
A.一个B.两个C.三个D.四个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow{b}$=(cosβ,sinβ),0<α<β<2π.
(1)若$\overrightarrow{c}$=(1,1),且$\overrightarrow{a}$∥$\overrightarrow{c}$,求$\overrightarrow{a}$的值;
(2)若$\overrightarrow{a}$•$\overrightarrow{b}$=1,cos(α+β)=$\frac{1}{3}$,求tanαtanβ的值;
(3)设$\overrightarrow{c}$=(2,0),若$\overrightarrow{a}$+2$\overrightarrow{b}$=$\overrightarrow{c}$,求α-β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=log2(1-x)-1og2(1+x).
(1)求函数的定义域;
(2)判断并证明函数f(x)的奇偶性;
(3)证明;当x∈(-1,1)时,对于任意实数k∈R,关于x的方程f(x)=k有且仅有一解.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x2-2x,若函数F(x)=|f(x)|+|f(a-x)|-t有四个零点,且它们的和为2,则实数t的取值范围是(1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1上的一点P到F(3,0)的距离为6,O为坐标原点,$\overrightarrow{OQ}$=$\frac{1}{2}$($\overrightarrow{OP}$+$\overrightarrow{OF}$),则|$\overrightarrow{OQ}$|=(  )
A.1B.5C.2或5D.1或5

查看答案和解析>>

同步练习册答案