精英家教网 > 高中数学 > 题目详情

【题目】平面直角坐标系中,经过椭圆 的一个焦点的直线相交于两点, 的中点,且斜率是.

()求椭圆的方程;

()直线分别与椭圆和圆 相切于点,求的最大值.

【答案】(Ⅰ) (Ⅱ)1.

【解析】试题分析:

()设出点M,N的坐标,利用点差法计算可得,结合焦点坐标有,据此计算可得椭圆的方程是

()分别为直线与椭圆和圆的切点, ,联立直线与椭圆的方程有,利用判别式,可得 ,直线与圆相切,则圆心到直线的距离等于半径,据此可得 ,则,结合绝对不等式的结论有当时, 的最大值是1.

试题解析:

() ,则

由此可得

又由题意知, 的右焦点是,故

因此 ,所以椭圆的方程是

()分别为直线与椭圆和圆的切点,

直线的方程为: ,代入

,判别式,得①,

直线相切,所以,即,再由①得

因为,当时取等号,所以

因此当时, 的最大值是1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求曲线 在点处的切线方程;

(2)当时,讨论函数的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数上存在唯一的满足, 那么称函数上的“单值函数”.已知函数上的“单值函数”,当实数取最小值时,函数上恰好有两点零点,则实数的取值范围是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知, .

1)求函数的增区间;

2)若函数有两个零点,求实数的取值范围,并说明理由;

3)设正实数 满足,当时,求证:对任意的两个正实数 总有.

(参考求导公式: )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面的菱形,侧面是边长为2的正三角形,且与底面垂直, 的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市根据地理位置划分成了南北两区,为调查该市的一种经济作物(下简称 作物)的生长状况,用简单随机抽样方法从该市调查了 500 处 作物种植点,其生长状况如表:

其中生长指数的含义是:2 代表“生长良好”,1 代表“生长基本良好”,0 代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.

(1)估计该市空气质量差的作物种植点中,不绝收的种植点所占的比例;

(2)能否有 99%的把握认为“该市作物的种植点是否绝收与所在地域有关”?

(3)根据(2)的结论,能否提供更好的调查方法来估计该市作物的种植点中,绝收种植点的比例?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一块三角形地的一角开辟为水果园,已知角 的长度均大于200米,现在边界处建围墙,在处围竹篱笆.

(1)若围墙总长度为200米,如何可使得三角形地块面积最大?

(2)已知竹篱笆长为米, 段围墙高1米, 段围墙高2米,造价均为每平方米100元,求围墙总造价的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆的半径垂直于直径 上一点, 的延长线交圆于点,过点的切线交的延长线于点,连接.

(1)求证:

(2)若 ,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等腰梯形中, 于点 ,且.沿折起到的位置(如图),使

I)求证: 平面

II)求三棱锥的体积.

III)线段上是否存在点,使得平面,若存在,指出点的位置并证明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案