精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}{(5-a)x-3a}&{x<1}\\{lo{g}_{a}x}&{x≥1}\end{array}\right.$在(-∞,+∞)上是增函数,则实数a的取值范围是(  )
A.[$\frac{5}{4}$,5)B.($\frac{5}{4}$,5]C.(1,5)D.(5,+∞)

分析 根据复合函数单调性之间的关系,结合对数函数和一次函数的单调性建立不等式关系即可.

解答 解:∵f(x)=$\left\{\begin{array}{l}{(5-a)x-3a}&{x<1}\\{lo{g}_{a}x}&{x≥1}\end{array}\right.$在(-∞,+∞)上是增函数,
∴$\left\{\begin{array}{l}{a>1}\\{5-a>0}\\{5-a-3a≤lo{g}_{a}1=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{a>1}\\{a<5}\\{a≥\frac{5}{4}}\end{array}\right.$,即$\frac{5}{4}$≤a<5,
故选:A

点评 本题主要考查复合函数单调性的应用,结合对数函数和一次函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x3-2x2+2,则下列区间必存在零点的是(  )
A.($-2,-\frac{3}{2}$)B.($-\frac{3}{2},-1)$C.($-1,-\frac{1}{2}$)D.($-\frac{1}{2},0$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在R上的函数f(x)满足f(-x)=f(x),对于任意x1,x2∈[0,+∞),$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0(x2≠x1),则(  )
A.f(-1)<f(-2)<f(3)B.f(3)<f(-1)<f(-2)C.f(-2)<f(-1)<f(3)D.f(3)<f(-2)<f(-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若圆x2+y2-4mx+(2m-3)y+4=0被直线2x-2y-3=0所截得的弦最长,则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数g(x)=1-x,f[g(x)]=$\frac{4+x}{2-{x}^{2}}$,则f(2)=(  )
A.5B.-5C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在如图所示的韦恩图中,A,B是非空集合,定义A*B表示阴影部分集合,若集合A={x|y=$\sqrt{3x-{x}^{2}}$,x,y∈R},B={y|y=4x,x>0},则A*B=[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知a1,a2,a3,a4成等比数列,其公比为2,则$\frac{{a}_{3}+2{a}_{4}}{{a}_{1}+2{a}_{2}}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac,则B=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a+a-1=5,求a2+a-2和a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$的值.

查看答案和解析>>

同步练习册答案