精英家教网 > 高中数学 > 题目详情

【题目】已知函数(其中是自然对数的底数, =2.71828…).

(1)当时,过点作曲线的切线,求的方程;

(2)当时,求证;

(3)求证:对任意正整数,都有

【答案】(1)(2)0≤a≤1(3)见解析

【解析】

(1)将 代入,设出切点坐标,利用导数的几何意义求出切线的斜率,由点斜式写出切线方程,再结合切线过点,即可求得切线方程;

(2)只要求出函数的最小值,证明函数的最小值大于等于0即可;
(3)由函数的最小值,构造不等式,令,得出关于正整数n的不等式 ,运用累加法即可证明.

1∵当时, ,则
设切点
由点斜式,可得切线方程为

又切线过点,则
∴切线方程为

(2)解:由f(x)=ex-ax-a,f′(x)=ex-a

①当a=0时,f(x)=ex≥0恒成立,满足条件,

②当0<a≤1时,由f′(x)=0,得x=ln a,

则当x∈(-∞,ln a)时,f′(x)<0,当x∈(ln a,+∞)时,f′(x)>0,

所以函数f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增,

所以函数f(x)在x=ln a处取得极小值即为最小值,

f(x)min=f(ln a)=eln a-aln a-a=-aln a.

因为0<a≤1,所以ln a≤0,所以-aln a≥0,

所以f(x)min≥0,

所以综上得,当0≤a≤1时,f(x)≥0;

(3)证明:由(2)知,当a=1时,f(x)≥0恒成立,

所以f(x)=ex-x-1≥0恒成立,

即ex≥x+1,所以ln (x+1)≤x,令,

,

所以ln (1+)+ln (1+)+…+ln (1+)≤++…+==1-()n<1,

所以(1+)(1+)…(1+)<e.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其中左焦点(-2,0).

1) 求椭圆C的方程;

2) 若直线y=x+m与椭圆C交于不同的两点AB,且线段AB的中点M在圆x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017101日,为庆祝中华人民共和国成立68周年,来自北京大学和清华大学的6名大学生志愿者被随机平均分配到天安门广场运送矿泉水、打扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有1名北京大学志愿者的概率是.

(1)求打扫卫生岗位恰好有北京大学、清华大学志愿者各1名的概率;

(2)设随机变量ξ为在维持秩序岗位服务的北京大学志愿者的人数,求ξ的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).

1)求选出的3名同学是来自互不相同学院的概率;

2)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某种设备的使用年限 ()与所支出的维修费用 (万元)有如下统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

已知.

(1)

(2) 具有线性相关关系,求出线性回归方程;

(3)估计使用年限为10年时,维修费用约是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={(x,y)|y=f(x)},若对于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:
①M={ };
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直对点集”的序号是(
A.①②
B.②③
C.①④
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一则“清华大学要求从 2017级学生开始,游泳达到一定标准才能毕业”的消息在体育界和教育界引起了巨大反响.其实,已有不少高校将游泳列为必修内容.

某中学拟在高一-下学期开设游泳选修课,为了了解高--学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

40

女生

30

合计

已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为.

(1).请将上述列联表补充完整,并判断是否可以在犯错误的概率不超过0.001的前提下认为喜欢游泳与性别有关.

(2)已知在被调查的学生中有6名来自高一(1) 班,其中4名喜欢游泳,现从这6名学生中随机抽取2人,求恰有1人喜欢游泳的概率.

附:

0.10

0.050

0.025

0.010

0.005

0.001

2.706

/td>

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则abc的值为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中错误的个数为:(

的图像关于点对称;②的图像关于点对称;

的图像关于直线对称;④的图像关于直线对称。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步练习册答案