精英家教网 > 高中数学 > 题目详情
15.如图所示的程序的输出结果为S=1320,则判断框中应填(  )
A.i≥9B.i≤9C.i≤10D.i≥10

分析 题目首先给循环变量和累积变量赋值,然后判断判断框中的条件是否满足,满足条件进入循环体,不满足条件算法结束.

解答 解:首先给循环变量i和累积变量S赋值12和1,
判断12≥10,执行S=1×12=12,i=12-1=11;
判断11≥10,执行S=12×11=132,i=11-1=10;
判断10≥10,执行S=132×10=1320,i=10-1=9;
判断9<10,输出S的值为1320.
故判断框中应填i≥10.
故选:D.

点评 本题主要考查了循环结构,是当型循环,当满足条件,执行循环,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知中心在坐标原点的椭圆C,F1,F2 分别为椭圆的左、右焦点,长轴长为6,离心率为$\frac{{\sqrt{5}}}{3}$
(1)求椭圆C 的标准方程;
(2)已知点P在椭圆C 上,且PF1=4,求点P到右准线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为2,抛物线E:x2=2y的准线与椭圆C相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与椭圆C相交于A,B两点且与抛物线E在第一象限相切于点P,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M,求$\frac{{S}_{△PFG}}{|OG|}$的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.长方体ABCD-A1B1C1D1的底面是边长为2的正方形,若在侧棱AA1上至少存在一点E,使得∠C1EB=90°,则侧棱AA1的长的最小值(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.根据下列条件求曲线的标准方程:
(1)准线方程为$x=-\frac{3}{2}$的抛物线;
(2)焦点在x轴上,且过点(2,0)、$(2\sqrt{3},\sqrt{6})$的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a=log43,b=log34,c=log53,则(  )
A.a>b>cB.b>a>cC.b>c>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}是公差为正数的等差数列,其前n项和为Sn,a1=1,且3a2,S3,a5成等比数列.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{4{S_n}-1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点P(1+cosα,sinα),参数为α,点Q在曲线C:ρ=$\frac{9}{\sqrt{2}sin(θ+\frac{π}{4})}$上.
(1)求点P的轨迹方程和曲线C的直角坐标方程;
(2)求点P与点Q之间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=2$\sqrt{3}$sinxcosx-2sin2x,x∈R,则函数f(x)的单调递增区间是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z).

查看答案和解析>>

同步练习册答案