[2014·宁波质检]化简Sn=n+(n-1)×2+(n-2)×22+…+2×2n-2+2n-1的结果是( )
A.2n+1-n | B.2n+1-n+2 |
C.2n-n-2 | D.2n+1-n-2 |
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知数列{an}的前n项和为Sn,点在直线上.数列{bn}满足
,前9项和为153.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设,数列{cn}的前n和为Tn,求使不等式对一切
都成立的最大正整数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列和满足:, 其中为实数,为正整数.
(Ⅰ)对任意实数,证明数列不是等比数列;
(Ⅱ)对于给定的实数,试求数列的前项和;
(Ⅲ)设,是否存在实数,使得对任意正整数,都有成立? 若存在,求的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知函数f(n)=,且an=f(n)+f(n+1),则a1+a2+a3+…+a2014等于( )
A.-2013 | B.-2014 | C.2013 | D.2014 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com