精英家教网 > 高中数学 > 题目详情

【题目】已知平行四边形中,是线段的中点,沿翻折到,使得平面平面.

1)求证:平面

2)求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】

1)首先证出,再利用面面垂直的性质定理即可证出.

2)以为原点,所在直线分别为轴建立如图所示的空间直角坐标系,求出平面的一个法向量,平面的一个法向量,利用空间向量的数量积即可求解.

1)由题意可知

,故.

因为平面平面,平面平面平面

所以平面.

2)由(1)知平面,且

为原点,所在直线分别为

建立如图所示的空间直角坐标系

.

由于是线段的中点,所以在平面中,

.

设平面的法向量为,则,即

,得

所以平面的一个法向量为

而平面的一个法向量为.

,易知二面角的平面角为锐角,

故二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】101日,某品牌的两款最新手机(记为型号,型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在101日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到下表:

手机店

型号手机销量

6

6

13

8

11

型号手机销量

12

9

13

6

4

(Ⅰ)若在101日当天,从这两个手机店售出的新款手机中各随机抽取1部,求抽取的2部手机中至少有一部为型号手机的概率;

(Ⅱ)现从这5个手机店中任选3个举行促销活动,用表示其中型号手机销量超过型号手机销量的手机店的个数,求随机变量的分布列和数学期望;

(III)经测算,型号手机的销售成本(百元)与销量(部)满足关系.若表中型号手机销量的方差,试给出表中5个手机店的型号手机销售成本的方差的值.(用表示,结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到的图象,只要将图象怎样变化得到( )

A.的图象沿x轴方向向左平移个单位

B.的图象沿x轴方向向右平移个单位

C.先作关于x轴对称图象,再将图象沿x轴方向向右平移个单位

D.先作关于x轴对称图象,再将图象沿x轴方向向左平移个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到点的距离比到直线的距离小,设点的轨迹为曲线.

1)求曲线的方程;

2)过曲线上一点)作两条直线与曲线分别交于不同的两点,若直线的斜率分别为,且.证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十三届全国人大二次会议于201935日在京召开为了了解某校大学生对两会的关注程度,学校媒体在开幕后的第二天,从全校学生中随机抽取了180人,对是否收看2019年两会开幕会情况进行了问卷调查,统计数据如下:

收看

没收看

男生

80

40

女生

30

30

1)根据上表说明,在犯错误的概率不超过1%的前提下,能否认为该校大学生收看开幕会与性别有关?(计算结果精确到0.001

2)现从随机抽取的学生中,采用按性别分层抽样的方法选取6人,来参加2019年两会的志愿者宣传活动,若从这6人中随机选取2人到各班级宣传介绍,求恰好选到一名男生和一名女生的概率. ,其中.

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家的学习兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下列数学问题的答案:已知数列1121248124816……,其中第一项是,接下来的两项是,再接下来的三项是……,以此类推,求满足如下条件的最小整数且该数列的前项和为2的整数幂,那么该软件的激活码是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)讨论函数的单调性;

(2)若函数在区间有唯一零点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,准线为,以为圆心的圆相切于点的纵坐标为是圆轴的不同于的一个交点.

1)求抛物线与圆的方程;

2)过且斜率为的直线交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的所有顶点都在球的球面上,平面,若球的表面积为,则三棱锥的侧面积的最大值为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案