精英家教网 > 高中数学 > 题目详情
14.把$-sinα+\sqrt{3}cosα$化成Asin(α+φ)(A>0,φ∈(0,2π))的形式为2sin($α+\frac{2π}{3}$).

分析 根据辅助角公式化解可得答案.

解答 解:由$-sinα+\sqrt{3}cosα$=$\sqrt{1+(\sqrt{3})^{2}}sin(α+$φ),tanφ=$-\sqrt{3}$,
∵φ∈(0,2π)),
∴φ=$\frac{2π}{3}$,
则$-sinα+\sqrt{3}cosα$=2sin($α+\frac{2π}{3}$),
故答案为:2sin($α+\frac{2π}{3}$).

点评 本题主要考察了辅助角公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知tanα=3,则$\frac{sinα-cosα}{2sinα+cosα}$的值为$\frac{2}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知sinx+siny=$\frac{1}{3}$,则u=sinx+cos2x的最小值是(  )
A.$-\frac{1}{9}$B.-1C.1D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC,若存在△A1B1C1,满足$\frac{cosA}{{sin{A_1}}}=\frac{cosB}{{sin{B_1}}}=\frac{cosC}{{sin{C_1}}}=1$,则称△A1B1C1是△ABC的一个“友好”三角形.在满足下述条件的三角形中,存在“友好”三角形的是②:(请写出符合要求的条件的序号)
①A=90°,B=60°,C=30°;②A=75°,B=60°,C=45°; ③A=75°,B=75°,C=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.曲线y=3sin2x图象上所有点的横坐标伸长为原来的2倍,纵坐标变为原来的$\frac{1}{3}$倍,所得图象对应的解析式为(  )
A.y=9sin4xB.y=sin4xC.y=9sinxD.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系中,有△ABC,且A(-3,0),B(3,0),顶点C到点A与点B的距离之差为4,则顶点C的轨迹方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1(x≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱锥S-ABCD中,底面ABCD为平行四边形,∠DBA=60°,∠SAD=30°,AD=SD=2$\sqrt{3}$,BA=BS=4.
(Ⅰ)证明:BD⊥平面SAD;
(Ⅱ)求二面角A-SB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题“x>0,总有(x+1)ex>1”的否定是(  )
A.“x>0,使得(x+1)ex>1”B.“x>0,总有(x+1)ex≥1”
C.“x>0,使得(x+1)ex≤1”D.x>0,总有(x+1)ex<1”

查看答案和解析>>

同步练习册答案