精英家教网 > 高中数学 > 题目详情

【题目】如图1,在高为2的梯形中, ,过分别作 ,垂足分别为。已知,将梯形沿同侧折起,得空间几何体,如图2。

(1)若,证明:

(2)若,证明:

(3)在(1),(2)的条件下,求三棱锥的体积。

【答案】(1)见解析;(2)见解析;(3).

【解析】试题分析:

(1)由题意可得,则,即为直角三角形;

(2)利用题意可得,结合线面平行的判断定理可得

(3)利用题意可得AE为三棱锥的高,结合体积公式可得.

试题解析:

(1)证明:由已知得,四边形为正方形,且边长为2,则在图2中,

由已知,可得

,所以

,所以

,所以,即

(2)证明:如图,取AC的中点G,连接OG,DG,则

则四边形DEOG为平行四边形,所以

,所以

(3)解:因为三棱锥的体积

,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a=(12),b=(-2,n),ab的夹角是45°.

(1) 求b

(2) cb同向,且aca垂直,求向量c的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据)如下表所示:

试销价格

(元)

4

5

6

7

9

产品销量

(件)

84

83

80

75

68

已知变量具有线性负相关关系,且,现有甲、乙、丙三位同学通过计算求得其回归直线方程分别为:甲,乙,丙,其中有且仅有一位同学的计算结果是正确的( ).

1)试判断谁的计算结果正确?并求出的值;

2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是理想数据,现从检测数据中随机抽取2个,理想数据的个数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一圆经过点,且它的圆心在直线.

I求此圆的方程

II若点为所求圆上任意一点,且点,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体,则下列说法不正确的是(

A.若点在直线上运动时,三棱锥的体积不变

B.若点是平面上到点距离相等的点,则点的轨迹是过点的直线

C.若点在直线上运动时,直线与平面所成角的大小不变

D.若点在直线上运动时,二面角的大小不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若四面体的三组对棱分别相等,即

给出下列结论:

四面体每个面的面积相等;

从四面体每个顶点出发的三条棱两两夹角之和大于 而小于

连结四面体每组对棱中点的线段相互垂直平分;

从四面体每个顶点出发的三条棱的长可作为一个三角形的三边长;

其中正确结论的序号是__________(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场没销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.

)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量(单位:台,)的函数解析式

)该商场记录了去年夏天(共10周)空调器需求量(单位:台),整理得下表:

10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,表示当周的利润(单位:元),求的分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线与双曲线有公共焦点是曲线在在第一象限的交点

1求双曲线的方程

2为圆心的圆与双曲线的一条渐进线相切.已知点,过点作互相垂直分别与圆相交的直线被圆解得的弦长为被圆截得的弦长为.试探索是否为定值请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等边三角形ABC的边长为4,M,N分别为AB,AC的中点,沿MN将△AMN折起,使点A到A′的位置.若平面A′MN与平面MNCB垂直,则四棱锥A′MNCB的体积为________

查看答案和解析>>

同步练习册答案