精英家教网 > 高中数学 > 题目详情
11.设命题p:实数x满足(x-a)(x-3a)<0,其中a>0,命题q:实数x满足 2<x≤3.
(1)若a=1,有p且q为真,求实数x的取值范围.
(2)若?p是?q的充分不必要条件,求实数a的取值范围.

分析 (1)命题p:实数x满足(x-a)(x-3a)<0,其中a>0,解得a<x<3a.若a=1,则p中:1<x<3,由p且q为真,可得p与q都为真,即可得出.
(2)若?p是?q的充分不必要条件,可得q是p 的充分不必要条件,即可得出.

解答 解:(1)命题p:实数x满足(x-a)(x-3a)<0,其中a>0,解得a<x<3a.
命题q中:实数x满足 2<x≤3.
若a=1,则p中:1<x<3,
∵p且q为真,∴$\left\{\begin{array}{l}{1<x<3}\\{2<x≤3}\end{array}\right.$,解得2<x<3,
故所求x∈(2,3).
(2)若?p是?q的充分不必要条件,
则q是p 的充分不必要条件,
∴$\left\{\begin{array}{l}{a≤2}\\{3a>3}\end{array}\right.$,解得1<a≤2,
∴a的取值范围是(1,2].

点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,已知⊙A和⊙B的公共弦CD与AB相交于点E,CB与⊙A相切,⊙B半径为2,AE=3.
(Ⅰ)求弦CD的长;
(Ⅱ)⊙B与线段AB相交于点F,延长CF与⊙A相交于点G,求CG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,D为BC边中点,G为AD中点,直线EF过G与边AB、AC相交于E、F,且$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,则m+n的最小值为(  )
A.4B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从3件正品,2件次品中随机抽取出两件,则恰好是1件正品,1件次品的概率是(  )
A.$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等差数列{an}中,a2=7,a4=15,则前5项的和S5=(  )
A.55B.65C.95D.110

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an},满足d>0,且a1+a2+a3=9,a1•a3=5
(1)求{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{a_n}{2^n}$,Sn为数列{bn}的前n项和,证明:Sn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知F1、F2为椭圆C:$\frac{{2{x^2}}}{9}+\frac{{2{y^2}}}{5}$=1的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2(  )
A.$\frac{1}{4}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,PA⊥面ABCD,PA=$\sqrt{3}$,E是BC的中点,F是PA上的一个动点.
(1)求证:CF⊥BD;
(2)求二面角D-PE-A的大小的正弦值;
(3)若直线EF与平面CDE所成角的正切值为$\frac{1}{\sqrt{21}}$,求AF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆和双曲线有共同的焦点F1,F2,P是它们的一个交点,且∠F1PF2=$\frac{π}{3}$,记椭圆和双曲线的离心率分别为e1,e2,则当$\frac{1}{{{e_1}{e_2}}}$取最大值时,e1,e2的值分别是(  )
A.$\frac{{\sqrt{2}}}{2},\frac{{\sqrt{6}}}{2}$B.$\frac{1}{2},\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{3}}}{3},\sqrt{6}$D.$\frac{{\sqrt{2}}}{4},\sqrt{3}$

查看答案和解析>>

同步练习册答案