精英家教网 > 高中数学 > 题目详情
如图,在三棱锥中,,设顶点A在底面上的射影为R.
(Ⅰ)求证:
(Ⅱ)设点在棱上,且,试求二面角的余弦值.
(Ⅰ)见解析;(Ⅱ).

试题分析:(Ⅰ)借助几何体的中线面垂直,证明BCDE为正方形,达到证明线线垂直的目的;(Ⅱ)方法一利用定义法做出二面角,通过解三角形求解二面角的平面角;方法二建立利用空间向量法,通过两个半平面的法向量借助夹角公式求解.
试题解析:证明:方法一:由平面,得
,则平面
,                3分
同理可得,则为矩形,
,则为正方形,故.        5分

方法二:由已知可得,设的中点,则,则平面,故平面平面,则顶点在底面上的射影必在,故
(Ⅱ)方法一:由(I)的证明过程知平面,过,垂足为,则易证得,故即为二面角的平面角,           8分
由已知可得,则,故,则
,则,              10分
,即二面角的余弦值为 12分
方法二: 由(I)的证明过程知为正方形,如图建立坐标系,

,可得,       8分
,易知平面
的一个法向量为,设平面的一个法向量为,则由         10分
,即二面角的余弦值为.    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面为矩形,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求几何体ABCDFE的体积;
(Ⅱ)证明:平面ADE∥平面BCF;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的直线,是不同的平面,则下列命题:
①若,则;②若,则
③若,则;④若,则.
其中正确命题的个数是           (   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱锥中,,底面是正三角形,分别是侧棱的中点.若平面平面,则平面与平面所成二面角(锐角)的余弦值等于(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于不重合的直线和不重合的平面,下列命题错误的是(   )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是三个不同的平面,下列命题中错误的是(  )
A.若,则
B.若,则
C.若,则
D.若是异面直线,,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,是边长为2的正三角形,平面ABC,平面平面ABC,BD=CD,且

(1)若AE=2,求证:AC∥平面BDE;
(2)若二面角A—DE—B为60°.求AE的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面是直角梯形的四棱锥S-ABCD中,


(1)求四棱锥S-ABCD的体积;
(2)求证:
(3)求SC与底面ABCD所成角的正切值。

查看答案和解析>>

同步练习册答案