精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若,求证:.

【答案】(Ⅰ)见解析(Ⅱ)见证明

【解析】

)利用导数与函数单调性的关系求解;

afx)>lnx.令FxF′(xx0).

01]时,F′(x)<0Fx)单调递减,Fx)≥F1)=ae0

当>1时,令Gx,利用导数求得最小值大于0即可.

解.(1fx)的定义域为(﹣∞,0)∪(0+∞),

x(﹣∞,0),(01)时,f′(x)<0x1+∞)时,f′(x)>0

∴函数fx)的单调增区间为:(1+∞),减区间为(﹣∞,0),(01).

2afx)>lnx

Fx

F′(x.(x0).

x01]时,F′(x)<0Fx)单调递减,Fx)≥F1)=ae0

x1时,令GxG

Gx)在(1+∞)单调递增,

x1时,Gx)→﹣∞,G2)=e20

Gx)存在唯一零点012),

FxminFx0

Gx0)=0

综上所述,当时,afx)>lnx成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)若曲线上一点的极坐标为,且过点,求的普通方程和的直角坐标方程;

(2)设点的交点为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面平面,四边形和四边形都是正方形,且边长为的中点.

(1)求证:直线平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间几何体ABCDFE中,底面是边长为2的正方形,.

(1)求证:AC//平面DEF;

(2)已知,若在平面上存在点,使得平面,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,三个内角所对的边分别为,满足.

(1) 求角的大小;

(2),求的值.(其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商为分析近8年“双十一”期间的宣传费用(单位:万元)和利润(单位:十万元)之间的关系,搜集了相关数据,得到下列表格:

(1)请用相关系数说明之间是否存在线性相关关系(当时,说明之间具有线性相关关系);

(2)建立关于的线性回归方程(系数精确到),预测当宣传费用为万元时的利润,

附参考公式:回归方程最小二乘估计公式分别为

,相关系数

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二(20)班共50名学生,在期中考试中,每位同学的数学考试分数都在区间内,将该班所有同学的考试分数分为七个组:,绘制出频率分布直方图如图所示.

(1)根据频率分布直方图,估计这次考试学生成绩的中位数和平均数;

(2)已知成绩为104分或105分的同学共有3人,现从成绩在中的同学中任选2人,则至少有1人成绩不低于106分的概率为多少?(每位同学的成绩都为整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—5:不等式选讲

已知函数

1)当时,解不等式

2)若存在实数,使得不等式成立,求实的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形为直角梯形, ,四边形为矩形,且 的中点.

(1)求证: 平面

(2)若,求平面与平面所成的锐二面角的大小.

查看答案和解析>>

同步练习册答案