精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(Ⅰ)讨论的单调性;

(Ⅱ)若函数存在极值,对于任意的,存在正实数,使得,试判断的大小关系并给出证明.

【答案】(Ⅰ)当时,上单调递增.当时,上单调递增,在上单调递减.(Ⅱ)详见解析

【解析】【试题分析】(Ⅰ)依据题设条件先求导,再分类讨论探求;(Ⅱ)借助题设条件,运用等价转化与化归的数学思想进行转化,然后再运用导数的知识分析探求:

解(Ⅰ)的定义域为.

时,则,所以上单调递增.

时,则由得,(舍去).当时,,当时,.所以上单调递增,在上单调递减.

综上所述,当时,上单调递增.

时,上单调递增,在上单调递减.

(Ⅱ)由(Ⅰ)知,当时,存在极值.

.

由题设得.

,所以

.设,则,则.

,则,所以上单调递增,所以,故.

又因为,因此,即.

又由上单调递减,所以,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数)的图象在点处的切线的斜率为且函数为偶函数若函数满足下列条件对一切实数不等式恒成立

(1)求函数的表达式

(2)设函数)的两个极值点)恰为的零点的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】口袋中装有2个白球和nn≥2,nN*)个红球.每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.

(I)用含n的代数式表示1次摸球中奖的概率;

(Ⅱ)若n=3,求3次摸球中恰有1次中奖的概率;

(III)记3次摸球中恰有1次中奖的概率为fp),当fp)取得最大值时,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量为坐标原点,动点满足:

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)已知直线都过点,且与轨迹分别交于点,试探究是否存在这样的直线?使得是等腰直角三角形.若存在,指出这样的直线共有几组(无需求出直线的方程);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家用电器公司生产一新款热水器,首先每年需要固定投入 200万元,其次每生产1百台,需再投入0.9万元.假设该公司生产的该款热水器当年能全部售出,但每销售1百台需另付运输费0.1万元.根据以往的经验,年销售总额(万元)关于年产量(百台)的函数为.

(1)将年利润表示为年产量的函数;

(2)求该公司生产的该款热水器的最大年利润及相应的年产量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品在天每件的销售价格(元)与时间(天)的函数关系用如图表示,该商品在天内日销售量(件)与时间(天)之间的关系如下表:

)根据提供的图象(如图),写出该商品每件的销售价格与时间的函数关系式.

)根据表提供的数据,写出日销售量与时间的一次函数关系式.

)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是天中的第几天.(日销售金额每件的销售价格日销售量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网时代的到来,手机的使用非常普遍,低头族随处可见。某校为了解家长和教师对学生带手机进校园的态度,随机调查了100位家长和教师,得到情况如下表:

教师

家长

反对

40

20

支持

20

20

1)是否有95%以上的把握认为带手机进校园与身份有关,并说明理由;

2)把以上频率当概率,随机抽取3位教师,记其中反对学生带手机进校园的人数为X,求随机变量X的分布列和数学期望.

附:

PK2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校高三学生的视力情况,随机地抽查了该校1000名高三学生的视力情况,得到频率分布直方图,如图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为,视力在4.6到5.0之间的学生数 的值分别为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在十一黄金周期间降价搞促销,某超市对顾客实行购物优惠活动,规定一次购物付款总额:(1)如果不超过200元,则不予优惠;(2)如果超过200元,但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其中500元按第(2)条给予优惠,超过500元的部分给予7折优惠。小张两次去购物,分别付款168元和423元,假设她一次性购买上述同样的商品,则应付款额为

查看答案和解析>>

同步练习册答案