精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,面对角线A1C1与体对角线B1D所成角等于______.
连结A1C1BD,
在正方体ABCD-A1B1C1D1中,
DD1⊥A1C1,B1D1⊥A1C1
∵DD1∩B1D1=D1
∴A1C1⊥面B1D1D,
∵DB1?面B1D1D,
∴A1C1⊥B1D.
即对角线A1C1与体对角线B1D所成角等于90°.
故答案为:90°
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,△ABC和△DBC所在的两个平面互相垂直,且AB=BC=BD,∠ABC=
DBC=120°,求
(1) AD连线和直线BC所成角的大小;
(2) 二面角ABDC的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知P为△ABC所在平面外的一点,PC⊥AB,PC=AB=2,E、F分别为PA和BC的中点
(1)求EF与PC所成的角;
(2)求线段EF的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图:正四面体S-ABC中,如果E,F分别是SC,AB的中点,那么异面直线EF与SA所成的角等于(  )
A.90°B.45°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1中,AB=AC=
1
2
AA1,∠BAC=90°,D为棱BB1的中点
(Ⅰ)求异面直线C1D与A1C所成的角;
(Ⅱ)求证:平面A1DC⊥平面ADC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD的底面是边长为2的菱形,且∠ABC=60°,PA=PC=2,PB=PD.
(Ⅰ)若O是AC与BD的交点,求证:PO⊥平面ABCD;
(Ⅱ)若点M是PD的中点,求异面直线AD与CM所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正三棱柱ABC-A1B1C1中,若AB=
2
,BB1=1,则AB1与C1B所成角的大小为(  )
A.60°B.90°C.105°D.75°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体ABCD中,O.E分别为BD.BC的中点,且CA=CB=CD=BD=2,AB=AD=
2

(1)求证:AO⊥平面BCD;
(2)求异面直线AB与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理)如图,单位正方体ABCD-A1B1C1D1,E,F分别是棱C1D1和B1C1的中点,试求:
(Ⅰ)AF与平面BEB1所成角的余弦值;
(Ⅱ)点A到面BEB1的距离.

查看答案和解析>>

同步练习册答案