1£®¼ºÖªÊýÁÐ{cn}µÄÇ°nÏîºÍΪTn£¬ÈôÊýÁÐ{cn}Âú×ã¸÷Ïî¾ùΪÕýÏ²¢ÇÒÒÔ£¨cn£¬Tn£©£¨n¡ÊN*£©Îª×ø±êµÄµã¶¼ÔÚÇúÏßay=$\frac{a}{2}$x2+$\frac{a}{2}$x+b£¬£¨aΪ·Ç0³£Êý£©ÉÏÔ˶¯£¬Ôò³ÆÊýÁÐ{cn}Ϊ¡°Å×ÎïÊýÁС±£¬¼ºÖªÊýÁÐ{bn}Ϊ¡°Å×ÎïÊýÁС±£¬Ôò£¨¡¡¡¡£©
A£®{bn}Ò»¶¨ÎªµÈ±ÈÊýÁÐB£®{bn}Ò»¶¨ÎªµÈ²îÊýÁÐ
C£®´ÓµÚ¶þÏîÆð{bn}Ò»¶¨ÎªµÈ±ÈÊýÁÐD£®´ÓµÚ¶þÏîÆð{bn}Ò»¶¨ÎªµÈ²îÊýÁÐ

·ÖÎö ÒÔ£¨cn£¬Tn£©£¨n¡ÊN*£©Îª×ø±êµÄµã¶¼ÔÚÇúÏßay=$\frac{a}{2}$x2+$\frac{a}{2}$x+b£¬£¨aΪ·Ç0³£Êý£©ÉÏÔ˶¯£¬¿ÉµÃTn=$\frac{1}{2}{c}_{n}^{2}$+$\frac{1}{2}{c}_{n}$+$\frac{b}{a}$£¬µ±n=1ʱ£¬c1=T1£¬c1£¾0£¬½âµÃc1=$\frac{1+\sqrt{1-\frac{8b}{a}}}{2}$£»
µ±n¡Ý2ʱ£¬cn=Tn-Tn-1£¬»¯Îª£º£¨cn+cn-1£©£¨cn-cn-1-1£©=0£¬¿ÉµÃcn-cn-1=1£¬¶Ôb·ÖÀàÌÖÂÛ£¬¼´¿ÉÅжϳö£®

½â´ð ½â£º¡ßÒÔ£¨cn£¬Tn£©£¨n¡ÊN*£©Îª×ø±êµÄµã¶¼ÔÚÇúÏßay=$\frac{a}{2}$x2+$\frac{a}{2}$x+b£¬£¨aΪ·Ç0³£Êý£©ÉÏÔ˶¯£¬
¡àTn=$\frac{1}{2}{c}_{n}^{2}$+$\frac{1}{2}{c}_{n}$+$\frac{b}{a}$£¬
µ±n=1ʱ£¬c1=T1=$\frac{1}{2}{c}_{1}^{2}+\frac{1}{2}{c}_{1}$+$\frac{b}{a}$£¬c1£¾0£¬½âµÃc1=$\frac{1+\sqrt{1-\frac{8b}{a}}}{2}$£®
µ±n¡Ý2ʱ£¬cn=Tn-Tn-1=$\frac{1}{2}{c}_{n}^{2}$+$\frac{1}{2}{c}_{n}$+$\frac{b}{a}$-$£¨\frac{1}{2}{c}_{n-1}^{2}+\frac{1}{2}{c}_{n-1}+\frac{b}{a}£©$£¬»¯Îª£º£¨cn+cn-1£©£¨cn-cn-1-1£©=0£¬
¡ßcn+cn-1£¾0£¬
¡àcn-cn-1=1£¬
µ±b=0ʱ£¬ÊýÁÐ{cn}ΪµÈ²îÊýÁУ¬Ê×ÏîΪ1£¬¹«²îΪ1£®
µ±b¡Ù0£¬$1-\frac{8b}{a}$¡Ý0ʱ£¬ÊýÁÐ{cn}´ÓµÚ¶þÏîÆðΪµÈ²îÊýÁУ¬Ê×ÏîΪc2=2£¬¹«²îΪ1£®
×ÛÉϿɵãºÊýÁÐ{cn}´ÓµÚ¶þÏîÆðÒ»¶¨ÎªµÈ²îÊýÁУ®
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éÁ˵ÝÍƹØϵ¡¢µÈ²îÊýÁеĶ¨Ò壬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÔÚʵÊý·¶Î§ÄÚ·Ö½âÒòʽx2-6x+8=£¨x-2£©£¨x-4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¹ýË«ÇúÏßÒ»½¹µãÇÒ´¹Ö±ÓÚË«ÇúÏßʵÖáµÄÖ±Ïß½»Ë«ÇúÏßÓÚA¡¢BÁ½µã£¬ÈôÒÔABΪֱ¾¶µÄԲǡ¹ýË«ÇúÏßµÄÒ»¸ö¶¥µã£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{3}{2}$B£®3C£®$\sqrt{3}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®º¯Êýf£¨x£©=cos2x-cos4xµÄ×î´óÖµºÍ×îСÕýÖÜÆÚ·Ö±ðΪ£¨¡¡¡¡£©
A£®$\frac{1}{4}$£¬¦ÐB£®$\frac{1}{4}$£¬$\frac{¦Ð}{2}$C£®$\frac{1}{2}$£¬¦ÐD£®$\frac{1}{2}$£¬$\frac{¦Ð}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÅ×ÎïÏßCµÄ¶¥µãÔÚ×ø±êÔ­µã£¬½¹µãΪԲM£ºx2+y2-4x=0µÄÔ²ÐÄ£¬Ö±ÏßlÓëÅ×ÎïÏßCµÄ×¼ÏߺÍyÖá·Ö±ð½»ÓÚµãP¡¢Q£¬ÇÒP¡¢QµÄ×Ý×ø±ê·Ö±ðΪ3t-$\frac{1}{t}$¡¢2t£¨t¡ÊR£¬t¡Ù0£©£®
£¨¢ñ£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨¢ò£©ÇóÖ¤£ºÖ±ÏßlºãÓëÔ²MÏàÇУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª¹ØÓÚxµÄ²»µÈʽ£¨1+a£©x£¾1µÄ½â¼¯Îª{x|x£¼$\frac{1}{1+a}$}£¬ÊÔÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª0£¼x£¼1£¬º¯Êýf£¨x£©=£¨1+x2£©£¨2-x£©£¬
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСֵ£»
£¨2£©Èôa¡¢b¡¢cΪÕý£¬ÇÒÂú×ãa+b+c=1£¬ÇóÖ¤$\frac{1}{1+{a}^{2}}$+$\frac{1}{1+{b}^{2}}$+$\frac{1}{1+{c}^{2}}$¡Ü$\frac{27}{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼×¡¢ÒÒÁ½ÈË×ÔÏà¾à27ǧÃ×´¦ÏàÏò³ö·¢£¬¼×ÔÈËÙÐнø£¬Ã¿Ð¡Ê±4ǧÃ×£¬ÒÒµÚһСʱ×ß2ǧÃ×£¬ÒÔºóÿСʱ¶à×ß0.5ǧÃ×£¬Îʼ¸Ð¡Ê±¼×¡¢ÒÒÏàÓö£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÏÂÁк¯ÊýÖУ¬¼ÈÊÇżº¯ÊýÓÖ´æÔÚÁãµãµÄÊÇ£¨¡¡¡¡£©
A£®y=x3B£®y=exC£®y=x2+1D£®y=ln|x|

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸