精英家教网 > 高中数学 > 题目详情

已知函数(为非零常数).
(Ⅰ)当时,求函数的最小值; 
(Ⅱ)若恒成立,求的值;
(Ⅲ)对于增区间内的三个实数(其中),
证明:.

(Ⅰ)(Ⅱ)(Ⅲ)由已知得:,


. 设
内是减函数,,即同理,∴

解析试题分析:(Ⅰ)由,得,                 1分
,得. 当单调递减;
单调递增;
的最小值为.                      4分
(Ⅱ),当时,恒小于零,单调递减.
时,,不符合题意.                    5分
对于,由
时,,∴单调递减;
时,,∴单调递增;
于是的最小值为.                   7分
只需成立即可,构造函数.
,∴上单调递增,在上单调递减,
,仅当时取得最大值,故       9分
(Ⅲ)由已知得:,


. 设
内是减函数,,即同理,∴
考点:函数单调性最值
点评:求函数最值要结合函数的单调区间确定最值点位置,第二问中不等式恒成立求参数范围常采用分离参数法转化为求函数最值问题,第三问将证明不等式转化为求函数最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为.
(I)当时,求函数的单调区间;
(II)当时, 若,使得, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-ln(x+m).
(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(Ⅱ)当m≤2时,证明f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
⑴求函数的单调区间;
⑵记函数,当时,上有且只有一个极值点,求实数的取值范围;
⑶记函数,证明:存在一条过原点的直线的图象有两个切点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数=x+ax2+blnx,曲线y =过P(1,0),且在P点处的切斜线率为2.
(1)求a,b的值;
(2)证明:≤2x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的单调区间;
(Ⅱ)求在区间上的最值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求函数的单调区间;
(Ⅱ)若函数的图象在点(2,f(2))处的切线的倾斜角为,对于任意的,函数 的导函数)在区间上总不是单调函数,求的取值范围;  
(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。
(I)求a的值
(II)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.
(Ⅰ)求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中的导函数.证明:对任意.

查看答案和解析>>

同步练习册答案