精英家教网 > 高中数学 > 题目详情

【题目】在“新零售”模式的背景下,某大型零售公司推广线下分店,计划在S市的A区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和.

x(个)

2

3

4

5

6

y(百万元)

2.5

3

4

4.5

6


(1)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程
(2)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为z=y﹣0.05x2﹣1.4,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?
(参考公式: ,其中

【答案】
(1)解:由表中数据和参考数据得:

∴y=0.85x+0.6.


(2)由题意,可知总收入的预报值 与x之间的关系为:

设该区每个分店的平均利润为t,则

故t的预报值 与x之间的关系为

则当x=4时, 取到最大值,

故该公司应开设4个分店时,在该区的每个分店的平均利润最大.


【解析】(1)根据所给数据求得样本的中心点,然后结合回归方程的计算公式求得,最后可求得回归方程,(2)由题意得到总收入的关系式,表示出每个分店的平均利润,利用均值不等式可得到每个分店的平均利润最大时x的取值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0),过点C(﹣4,0)作抛物线的两条切线CA,CB,A,B为切点,若直线AB经过抛物线y2=2px的焦点,△CAB的面积为24,则以直线AB为准线的抛物线标准方程是(  )
A.y2=4x
B.y2=﹣4x
C.y2=8x
D.y2=﹣8x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知曲线 (α为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线 ,曲线C3:ρ=2sinθ.
(1)求曲线C1与C2的交点M的直角坐标;
(2)设点A,B分别为曲线C2 , C3上的动点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为整数的数列{an}中,a1=2,且对任意的n∈N* , 满足an+1﹣an<2n+ ﹣1,则a2017=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是: ,则5288用算筹式可表示为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四面体A﹣BCD中,AB=CD=10,AC=BD=2 ,AD=BC=2 ,则四面体A﹣BCD外接球的表面积为(  )
A.50π
B.100π
C.200π
D.300π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥CD, ,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF=1.

(1)求证:EF⊥平面BCF;
(2)点M在线段EF(含端点)上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大,并求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|< )的图象过点 ,且在( )上单调,同时f(x)的图象向左平移π个单位之后与原来的图象重合,当 ,且x1≠x2时,f(x1)=f(x2),则f(x1+x2)=(  )
A.﹣
B.﹣1
C.1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥 中, 平面 ,底面 是梯形,

(1)求证:平面 平面
(2)设 为棱 上一点, ,试确定 的值使得二面角

查看答案和解析>>

同步练习册答案