精英家教网 > 高中数学 > 题目详情

【题目】某几何体的三视图如图所示,网格纸上的小正方形边长为1,则此几何体的外接球的表面积为( )

A.B.C.D.

【答案】B

【解析】

由三视图可还原得到三棱锥,三棱锥可放在如图底面边长为2,侧棱长为4的正四棱柱中,EF为棱中点,设O为三棱锥外接球的球心,分别为点Q在平面ABCD,平面ECD的投影.由于都为等腰三角形,故分别在中线FGEG.构造直角三角形可求解得到,结合即得解.

由题设中的三视图,可得该几何体为如下图所示的三棱锥,放在底面边长为2,侧棱长为4的正四棱柱中,EF为棱中点,取GCD中点,连接GFGE.

O为三棱锥外接球的球心,分别为点O在平面ABCD,平面ECD的投影.由于都为等腰三角形,故分别在中线FGEG.

由于,在中,

同理在中,

外接球半径

故外接球的表面积

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为t为参数),以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρρ2sinθ)=1

1)求C的直角坐标方程;

2)设直线ly轴相交于P,与曲线C相交于AB两点,且|PA|+|PB|2,求点O到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点在椭圆上,且的面积为.

1)求椭圆的方程;

2)过原点作圆的两条切线,切点分别为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为

1)求圆的圆心到直线的距离;

2)己知,若直线与圆交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为进行爱国主义教育,在全校组织了一次有关钓鱼岛历史知识的竞赛.现有甲、乙两队参加钓鱼岛知识竞赛,每队3人,规定每人回答一个问题,答对为本队赢得1分,答错得0分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响,用ξ表示甲队的总得分.

)求随机变量ξ的分布列和数学期望;

)用表示甲、乙两个队总得分之和等于3”这一事件,用表示甲队总得分大于乙队总得分这一事件,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若在定义域内单调递增,求实数a的取值范围;

2)若有两个不同的极值点,记过点的直线的斜率为k,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(b为常数)

(1)若b=1,求函数H(x)=f(x)﹣g(x)图象在x=1处的切线方程;

(2)若b2,对任意x1,x2∈[1,2],且x1x2,都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图抛物线的焦点为为抛物线上一点(轴上方),点到轴的距离为4.

1)求抛物线方程及点的坐标;

2)是否存在轴上的一个点,过点有两条直线,满足交抛物线两点.与抛物线相切于点不为坐标原点),有成立,若存在,求出点的坐标.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果,已知正方形的边长为2,平行轴,顶点分别在函数的图像上,则实数的值为________

查看答案和解析>>

同步练习册答案