A. | f(x)=$\frac{{{x^2}-4}}{x-2}$,g(x)=x+2 | B. | f(x)=$\sqrt{x^2},g(x)={({\sqrt{x}})^2}$ | ||
C. | f(x)=$\sqrt{x+1}•\sqrt{x-1},g(x)=\sqrt{{x^2}-1}$ | D. | f(x)=|x|,g(x)=$\left\{\begin{array}{l}x(x≥0)\\-x(x<0)\end{array}$ |
分析 若函数f(x)与g(x)的图象相同,则两个函数的定义域和解析式一致,逐一分析四个答案中的两个函数,可得结论.
解答 解:A中函数f(x)=$\frac{{{x^2}-4}}{x-2}$与g(x)=x+2定义域不同,故不表示同一函数;
B中函数f(x)=$\sqrt{x^2},g(x)={({\sqrt{x}})^2}$定义域不同,解析式也不同,故不表示同一函数;
C中函数f(x)=$\sqrt{x+1}•\sqrt{x-1},g(x)=\sqrt{{x^2}-1}$定义域不同,故不表示同一函数;
D中函数f(x)=|x|,g(x)=$\left\{\begin{array}{l}x(x≥0)\\-x(x<0)\end{array}$,定义域与解析式均一致,表示同一函数,则两函数图象相同,
故选:D.
点评 本题考查的知识点是判断两个函数是否是同一函数,正确理解同一函数的定义域和解析式一致,是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(2a)<f(3)<f(log2a) | B. | f(log${\;}_{2}a)<f(3)<f({2}^{a})$<f(3)<f(2a) | ||
C. | f(3)$<f(lo{g}_{2}a)<f({2}^{a})$ | D. | f(log${{\;}_{2}}^{a}$)<f(2a)<f(3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{2}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\left\{{x\left|{-\frac{1}{b}<x}\right.<0或0<x<\frac{1}{a}}\right\}$ | B. | $\left\{{x\left|{-\frac{1}{a}<x}\right.<0或0<x<\frac{1}{b}}\right\}$ | ||
C. | $\left\{{x\left|{x<-\frac{1}{b}}\right.或x>\frac{1}{a}}\right\}$ | D. | $\left\{{x\left|{-\frac{1}{a}<x}\right.<\frac{1}{b}}\right\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分非必要条件 | B. | 必要非充分条件 | ||
C. | 充要条件 | D. | 既非充分又非必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com