精英家教网 > 高中数学 > 题目详情
10.直角坐标系中,方程|x|•y=1表示的曲线是(  )
A.B.
C.D.

分析 由题意可得x≠0,则|x|•y=1可化为分段函数$y=\left\{\begin{array}{l}{\frac{1}{x},x>0}\\{-\frac{1}{x},x<0}\end{array}\right.$,则答案可求.

解答 解:由|x|•y=1,可知x≠0,
∴$y=\frac{1}{|x|}$=$\left\{\begin{array}{l}{\frac{1}{x},x>0}\\{-\frac{1}{x},x<0}\end{array}\right.$,
则方程|x|•y=1表示的曲线是C.
故选:C.

点评 本题考查曲线与方程,考查了分类讨论的数学思想方法,关键是明确反比例函数的图象,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设全集U={1,2,3,4,5,6},集合A={1,3,5},B={2,3},则A∩(∁UB)={1,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)是定义在(0,+∞)的函数.对任意两个不相等的正数x1,x2,都有$\frac{{x}_{2}f({x}_{1})-{x}_{1}f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,记a=$\frac{f({3}^{0.2})}{{3}^{0.2}}$,b=$\frac{f(0.{3}^{2})}{0.{3}^{2}}$,c=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,则(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x,y∈R+,满足xy=$\frac{x-4y}{x+y}$,则y的最大值为$\sqrt{5}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lg$\frac{kx-1}{x-1}$.
(1)求f(x)的定义域;
(2)若f(x)在[2,+∞)上单调增,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{2}$(2x+2-x);
(1)求函数的定义域;
(2)判断函数的奇偶性;
(3)判断并证明函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设x>0,y>0,x+$\frac{1}{x}$+$\frac{y}{2}$+$\frac{8}{y}$=10.则2x+y的最大值为18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设p:x<3,q:-1<x<3,则p是q成立的必要不充分条件(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为$\frac{3}{4}$.过定点D(0,p)作直线与抛物线C相交于A,B两点.
(I)求抛物线C的方程;
(II)若点N是点D关于坐标原点O的对称点,求△ANB面积的最小值;
(Ⅲ)是否存在垂直于y轴的直线l,使得l被以AD为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案