精英家教网 > 高中数学 > 题目详情
(2013•永州一模)若两整数a,b除以同一个整数m,所得余数相同,则称a,b对模m同余.即当a,b,m∈z时,若
a-bm
=k(k∈z,k≠0),则称a、b对模m同余,用符号a=b(modm)表示.
(1)若6=b(mod2)且0<b<6,则b的所有可能取值为
2,4
2,4

(2)若a=10(modm)(a>10,m>1),满足条件的a由小到大依次记为a1,a2…an,…,当数列{an}前m-1项的和为60(m-1)时,则m=
10
10
分析:(1)由两数同余的定义,m是一个正整数,对两个正整数a、b,若a-b是m的倍数,则称a、b模m同余,我们易得若6=b(mod2),则6-b为2的整数倍,则b=6-2n,n∈Z,再根据0<b<6易得答案.
(2)若a=10(modm)(a>10,m>1),由两数同余的定义得,a=10+mn,n∈N*,又a>10,m>1,分别取n=1,2,3,…,m-1得数列{an}前m-1项10+m,10+2m,10+3m,…,10+m(m-1),再根据数列{an}前m-1项的和60(m-1)结合等差数列的求和公式列出关于m的方程,即可求出m的值.
解答:解:(1)由两数同余的定义,
m是一个正整数,对两个正整数a、b,若a-b是m的倍数,
则称a、b模m同余,
我们易得若6=b(mod2),b=6-2n,n∈Z,又0<b<6,
故b=2,4满足条件.
(2)若a=10(modm)(a>10,m>1),由两数同余的定义得,
a=10+mn,n∈N*,又a>10,m>1,
故a=10+m,10+2m,10+3m,…,10+m(m-1)满足条件.
数列{an}前m-1项的和为(m-1)(10+m)+
1
2
(m-1)(m-2)m=60(m-1),
解得m=10.
故答案为:2,4;10.
点评:这是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:根据新运算的定义,将已知中的数据代入进行运算,易得最终结果.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•永州一模)已知函数f(x)=mlnx+
1
x
,(其中m为常数)
(1)试讨论f(x)在区间(0,+∞)上的单调性;
(2)令函数h(x)=f(x)+
1
m
lnx
-x.当m∈[2,+∞)时,曲线y=h(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得过P、Q点处的切线互相平行,求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x≤200时,车流速度v与车流密度x满足v(x)=40-
k
250-x
.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时.
(Ⅰ)当0<x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到个位,参考数据
5
≈2.236

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)已知A,B是圆C(为圆心)上的两点,|
AB
|=2,则
AB
AC
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)设集合A={x|-1<x<2},B={x|x2≤1},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)“x≠3”是“|x-3|>0”的(  )

查看答案和解析>>

同步练习册答案