精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分14分)

已知动点M到点的距离等于M到的距离的.

(1)求动点M的轨迹C的方程

(2)若直线轨迹C没有交点,求的取值范围;

(3)已知圆轨迹C相交于两点,求

【答案】(1)

(2)

(3)

【解析】

试题分析:注意把握求轨迹方程的四步曲,建系、设点、列式、化简,本题建系就省了,注意求哪个点的轨迹方程,就设哪个点的坐标为,根据题意,列出等量关系式,化简即可,对于第二问,注意考查的是圆与直线的位置关系,通过圆心到直线的距离与半径比较大小即可判断,对于第三问,涉及到两圆的公共弦长的问题,注意转化,将所求量放到相应的直角三角形中来求解.

试题解析:

解:(1) (2分)

整理得,即动点M的轨迹C的方程. (4分)

(2)由,消去并化简得 (6分)

因为直线轨迹C没有交点,所以 (8分)

,解得. (9分)

(3)的圆心坐标为,半径 (10分)

这就是AB所在的直线方程, (11分)

圆心到直线AB的距离 (13分)

所以. (14分)

或:AB所在的直线方程的交点坐标为 (13分)

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有甲、乙两种商品,经营销售这两种商品所得的利润依次为M万元和N万元,它们与投入资金万元的关系可由经验公式给出:M=N= (≥1).今有8万元资金投入经营甲、乙两种商品,且乙商品至少要求投资1万元,

设投入乙种商品的资金为万元,总利润

2)为获得最大利润,对甲、乙两种商品的资金投入分别是多少?共能获得多大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·哈尔滨高二检测)如图下列四个几何体中它们的三视图(正视图、俯视图、侧视图)有且仅有两个相同而另一个不同的两个几何体是________.

(1)棱长为2的正方体    (2)底面直径和高均为2的圆柱

(3)底面直径和高

均为2的圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

设椭圆的离心率为,其左焦点与抛物线的焦点相同.

1)求此椭圆的方程;

2)若过此椭圆的右焦点的直线与曲线只有一个交点,则

求直线的方程;

椭圆上是否存在点,使得,若存在,请说明一共有几个点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

如图,在正四面体中,分别是棱的中点.

1)求证:四边形是平行四边形;

2)求证:平面

3)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对车辆限行的态度,随机抽查了50人,将调查情况进行整理后制成下表:

)完成被调查人员的频率分布直方图;

)若从年龄在[1525),[2535)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;

)在()的条件下,再记选中的4人中不赞成车辆限行的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设函数

1)若函数的图象关于直线对称,且时,求函数的单调增区间;

2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”.

(1)判断集合A={-1,1,2}是否为可倒数集;

(2)试写出一个含3个元素的可倒数集.

查看答案和解析>>

同步练习册答案