精英家教网 > 高中数学 > 题目详情

【题目】已知,设函数.

(1)讨论单调性;

(2)若当时,,求的取值范围.

【答案】(1)见解析;(2)

【解析】

(1)求出函数的导数,然后根据的不同取值,进行分类讨论函数的单调性;

(2)当时,,且时,,于是等价于,显然若时,不等式不成立;当若,构造新函数,求导,得,函数单调递增,所以,可以证明出当时,,当时,可以通过找到零点,证明出不恒大于零.

解:(1).

时,,当时,,当时,.所以单调递增;单调递减.

时,由,因为,所以当时,,当时,.所以单调递增;单调递减.

(2)当时,,且时,,于是等价于.

,当时,不成立.

,设.

函数单调递增,所以.

时,单调递增,所以.

时,因为,所以存在唯一,使得当时,单调递减,不成立.

综上,的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现代城市大多是棋盘式布局(如北京道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义两点间的直角距离为:.

1)在平面直角坐标系中,写出所有满足到原点的直角距离2格点的坐标.(格点指横、纵坐标均为整数的点)

2)求到两定点直角距离和为定值的动点轨迹方程,并在直角坐标系内作出该动点的轨迹.(在以下三个条件中任选一个做答)

.

3)写出同时满足以下两个条件的格点的坐标,并说明理由(格点指横、纵坐标均为整数的点).

①到两点直角距离相等;

②到两点直角距离和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是圆上任意一点,,线段的垂直平分线与半径交于点,当点在圆上运动时,记点的轨迹为曲线.

(1)求曲线的方程;

(2)记曲线轴交于两点,是直线上任意一点,直线与曲线的另一个交点分别为,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的方程为,集合,若对于任意的,都存在,使得成立,则称曲线曲线,下列方程所表示的曲线中,是曲线的有______(写出所有曲线的序号)

;②;③;④;⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数时取得极值,求实数的值;

(Ⅱ)当时,求零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学举办“父母养育我,我报父母恩”的活动,对六个年级(一年级到六年级的年级代码分别为1,2…,6)的学生给父母洗脚的百分比y%进行了调查统计,绘制得到下面的散点图.

(1)由散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;

(2)建立y关于x的回归方程,并据此预计该校学生升入中学的第一年(年级代码为7)给父母洗脚的百分比.

附注:参考数据:

参考公式:相关系数,若r>0.95,则y与x的线性相关程度相当高,可用线性回归模型拟合y与x的关系.回归方程中斜率与截距的最小二乘估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,函数在第一象限内的图像如图所示,试做如下操作:把x轴上的区间等分成n个小区间,在每一个小区间上作一个小矩形,使矩形的右端点落在函数的图像上.若用表示第k个矩形的面积,表示这n个叫矩形的面积总和.

1)求的表达式;

2)利用数学归纳法证明,并求出的表达式

3)求的值,并说明的几何意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,其中,点是椭圆的右顶点,射线与椭圆的交点为.

1)求点的坐标;

2)设椭圆的长半轴、短半轴的长分别为,当的值在区间中变化时,求的取值范围;

3)在(2)的条件下,以为焦点,为顶点且开口方向向左的抛物线过点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,对于点,若函数满足:,都有,就称这个函数是点的“限定函数”.以下函数:①,②,③,④,其中是原点的“限定函数”的序号是______.已知点在函数的图象上,若函数是点的“限定函数”,则的取值范围是______

查看答案和解析>>

同步练习册答案