精英家教网 > 高中数学 > 题目详情
2.如图所示,有一个堤坝,原斜坡AB长50m,坡角∠ABC=40°,现要将斜坡的坡角改成25°,即∠D=25°,那么斜坡的坡底要延长多少(精确到0.1m)?

分析 在△ABD中,∠BAD=40°-25°=15°.由正弦定理可得:$\frac{BD}{sin1{5}^{°}}$=$\frac{AB}{sin2{5}^{°}}$,即可得出.

解答 解:在△ABD中,∠BAD=40°-25°=15°.
由正弦定理可得:$\frac{BD}{sin1{5}^{°}}$=$\frac{AB}{sin2{5}^{°}}$,
∴$BD=\frac{50sin1{5}^{°}}{sin2{5}^{°}}$=$\frac{0.2588×50}{0.4226}$≈30.6.
答:斜坡的坡底要延长30.6m.

点评 本题考查了正弦定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设定义在(0,+∞)上的函数f(x)满足x2f′(x)+2xf(x)=1+lnx,f(1)=0,若关于x的方程f(x)=a有两个不等实数根,则实数a的取值范围为(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在四边形ABCD中,设$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{BC}=\overrightarrow{b}$,$\overrightarrow{AD}$=$\overrightarrow{c}$,则$\overrightarrow{CD}$等于(  )
A.$\overrightarrow{c}$-($\overrightarrow{a}$+$\overrightarrow{b}$)B.$\overrightarrow{b}$-($\overrightarrow{a}+\overrightarrow{c}$)C.$\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{c}$D.$\overrightarrow{a}-\overrightarrow{b}+\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{a}{{a}^{2}-2}$(ax-a-x)(其中a>0且a≠1)在(-∞,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.两个非负实数x、y满足x+2y≤2,则z=x-y的最大值等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四面体ABCD中,△ABD,△ACD,△DBC和△ABC全等,且AB=AC=$\sqrt{3}$,BC=2;求证:平面BCD⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}、{bn}满足:a1=$\frac{1}{4}$,an+bn=1,bn+1=$\frac{{b}_{n}}{1{-a}_{n}^{2}}$.
(1)求证数列{$\frac{1}{{b}_{n}-1}$}是等差数列;
(2)若cn=$\frac{{a}_{n}{-a}_{n}^{2}}{{2}^{n}(1-2{a}_{n})(1-3{a}_{n})}$,求数列{cn}的前n项和Sn≥$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图是一个几何体的正视图和侧视图,其俯视图是面积为8$\sqrt{2}$的矩形.则该几何体的表面积是20+8$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知α是第三象限角.f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})}{cos(-α-π)}$.
(1)若cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值;
(2)若α=-1920°,求f(α)的值.

查看答案和解析>>

同步练习册答案