精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)= cos(2x+ )+sin2x
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)设函数g(x)对任意x∈R,有g(x+ )=g(x),且当x∈[0, ]时,g(x)= ﹣f(x),求g(x)在区间[﹣π,0]上的解析式.

【答案】解:函数f(x)= cos(2x+ )+sin2x
= cos2x﹣ sin2x+ (1﹣cos2x)= sin2x.
(Ⅰ)函数的最小正周期为T= =π.
(Ⅱ)当x∈[0, ]时g(x)= = sin2x.
当x∈[﹣ ,0]时,x+ ∈[0, ],g(x)=g(x+ )= sin2(x+ )=﹣ sin2x.
当x∈[ )时,x+π∈[0, ],g(x)=g(x+π)= sin2(x+π)= sin2x.
g(x)在区间[﹣π,0]上的解析式:g(x)=
【解析】利用两角和的余弦函数以及二倍角公式化简函数的表达式,
(Ⅰ)直接利用周期公式求解即可.(Ⅱ)求出函数g(x)的周期,利用x∈[0, ]时,g(x)= ﹣f(x),对x分类求出函数的解析式即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设两个向量 =(λ+2,λ2﹣cos2α)和 =(m, +sinα),其中λ,m,α为实数.若 =2 ,则 的取值范围是(
A.[﹣1,6]
B.[﹣6,1]
C.(﹣∞, ]
D.[4,8]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+ )(ω>0),将函数y=f(x)的图象向右平移 个单位长度后,所得图象与原函数图象重合ω最小值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为An , 对任意n∈N*满足 = ,且a1=1,数列{bn}满足bn+2﹣2bn+1+bn=0(n∈N*),b3=5,其前9项和为63.
(1)求数列{an}和{bn}的通项公式;
(2)令cn= + ,数列{cn}的前n项和为Tn , 若对任意正整数n,都有Tn≥2n+a,求实数a的取值范围;
(3)将数列{an},{bn}的项按照“当n为奇数时,an放在前面;当n为偶数时,bn放在前面”的要求进行“交叉排列”,得到一个新的数列:a1 , b1 , b2 , a2 , a3 , b3 , b4 , a4 , a5 , b5 , b6 , …,求这个新数列的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的四棱锥S﹣ABCD中,SA⊥底面ABCD,∠DAB=∠ABC=90°,SA=AB=BC=a,AD=3a(a>0),E为线段BS上的一个动点.

(1)证明:DE和SC不可能垂直;
(2)当点E为线段BS的三等分点(靠近B)时,求二面角S﹣CD﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点F1(﹣c,0),F2(c,0)分别是椭圆C: (a>b>0)的左右焦点,经过F1做x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2垂线交直线 于点Q.
(Ⅰ)如果点Q的坐标是(4,4),求此时椭圆C的方程;
(Ⅱ)证明:直线PQ与椭圆C只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f′(x)是函数f(x)的导函数,且f′(x)>2f(x)(x∈R),f()=e(e为自然对数的底数),则不等式f(lnx)<x2的解集为(  )
A.(0,
B.(0,
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=(  )

A.12 B.14 C.16 D.18

【答案】B

【解析】Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn=210,得n=14.

型】单选题
束】
9

【题目】等比数列{an}是递减数列,前n项的积为Tn,若T13=4T9,则a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn+2=2an(n∈N*).
(I)求数列{an}的通项公式;
(Ⅱ)设bn=log2an , 数列{}的前n项和为Tn , 证明:Tn<1.

查看答案和解析>>

同步练习册答案