精英家教网 > 高中数学 > 题目详情
下列四个命题中,真命题的序号是
①③
①③

①?m∈R,使f(x)=(m-1)xm2-4m+3是幂函数;
②“若am2<bm2,则a<b”的逆命题为真;
③?a>0,函数f(x)=ln2x+lnx-a有零点;
④命题“?x∈R,都有x2-3x-2≥0”的否定是“?x∈R,使得x2-3x-2≤0”
分析:根据幂函数的一般形式,当m-1=1,即m=2函数为幂函数,进而可判断①的真假;
令m=0,根据不等式的性质,可判断②的真假;
根据韦达定理及换元思想,可判断?a>0,ln2x+lnx-a=0有两个不等的实根,进而根据方程根与对应函数零点之间的关系,可判断③的真假;
根据全称命题的否定方法,求出已知命题的否定,比照后可得④的真假
解答:解:当m=2时,f(x)=(m-1)xm2-4m+3是幂函数,故①正确;
“若am2<bm2,则a<b”的逆命题为“若a<b,则am2<bm2”在m=0时不成立,故②错误;
?a>0,ln2x+lnx-a=0有两个不等的实根,故函数f(x)=ln2x+lnx-a有两个零点,故③正确;
命题“?x∈R,都有x2-3x-2≥0”的否定是“?x∈R,使得x2-3x-2<0”,故④错误
故答案为:①③
点评:本题考查的知识点是全称命题,命题的否定,幂函数,四种命题,函数的零点,是必修一知识点的综合应用,熟练掌握上述基础知识,真正理解是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1
满足条件:(1)焦点为F1(-5,0),F2(5,0);(2)离心率为
5
3
,求得双曲线C的方程为f(x,y)=0.若去掉条件(2),另加一个条件求得双曲线C的方程仍为f(x,y)=0,则下列四个条件中,符合添加的条件可以是(  )
①双曲线C:
x2
a2
-
y2
b2
=1
上的任意点P都满足||PF1|-|PF2||=6;
②双曲线C:
x2
a2
-
y2
b2
=1
的渐近线方程为4x±3y=0;
③双曲线C:
x2
a2
-
y2
b2
=1
的焦距为10;
④双曲线C:
x2
a2
-
y2
b2
=1
的焦点到渐近线的距离为4.
A、①③B、②③C、①④D、①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个判断中,正确判断的个数为(  )
①经过定点P(x0,y0)的直线都可以用y-y0=k(x-x0)表示;
②经过定点P(0,b)的直线都可以用y=kx+b表示;
③不经过原点的直线都可以用
x
a
+
y
b
=1
表示;
④任意直线都可以用Ax+By+C=0(A,B不同时为零)表示.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•厦门模拟)某赛季甲、乙两名篮球运动员各6场比赛得分情况用茎叶图记录,下列四个结论中,不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是(  )
精英家教网
A、①②B、②③C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题:“”,命题:“”,给出下列四个判断:①是真命题,②是真命题,③是真命题,④是真命题,其中正确的是(     )

A. ② ④               B. ② ③

C. ③ ④               D. ① ② ③

查看答案和解析>>

同步练习册答案