A. | f(x)=lnx | B. | f(x)=-x3 | C. | f(x)=log${\;}_{\frac{1}{2}}$x | D. | f(x)=3-x |
分析 根据条件可知,对数函数符合条件,f(xy)=f(x)+f(y),再给出证明,最后根据函数的单调性确定选项.
解答 解:对数函数符合条件f(xy)=f(x)+f(y),证明如下:
设f(x)=logax,其中,x>0,a>0且a≠1,
则f(xy)=logaxy=logax+logay=f(x)+f(y),
即对数函数f(x)=logax,符合条件f(xy)=f(x)+f(y),
同时,f(x)单调递减,则a∈(0,1),
综合以上分析,对数函数f(x)=$lo{g}_{\frac{1}{2}}x$符合题意,
故答案为:C.
点评 本题主要考查了抽象函数及其应用,涉及抽象函数的运算和函数模型的确定,以及对数的运算性质,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1)(2) | B. | (2)(3) | C. | (1)(4) | D. | (2)(4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {4,8} | B. | {5,6,7} | C. | {3,5,7} | D. | {6,7} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | -1 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com