精英家教网 > 高中数学 > 题目详情

甲、乙两名射击运动员,甲射击一次命中10环的概率为,乙射击一次命中10环的概率为s,若他们各自独立地射击两次,设乙命中10环的次数为ξ,且ξ的数学期望Eξ=表示甲与乙命中10环的次数的差的绝对值.

    (1)求s的值及的分布列,

    (2)求的数学期望.

解:(1)依题意知ξ∽B(2,s),故Eξ=2s=

   ∴s=.  

   的取值可以是0,1,2.

甲、乙两人命中10环的次数均为0次的概率是

甲、乙两人命中10环的次数均为1次的概率是

甲、乙两人命中10环的次数均为2次的概率是

(=0)=

甲命中10环的次数为2次且乙命中10环的次数为0次的概率是

甲命中10环的次数为0次且乙命中10环的次数为2次的概率是

(=2)==,                             

(=1)=1(=0)(=2)=. 

的分布列是

0

1

2

(2)E=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环)
10 8 9 9 9
10 10 7 9 9
如果甲、乙两人只有1人入选,则入选的应是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

17、甲、乙两名射击运动员进行射击选拔比赛,已知甲、乙两运动员射击的环数稳定在6,7,8,9,10环,其射击比赛成绩的分布列如下:
甲运动员:

乙运动员:

(Ⅰ)若甲、乙两运动员各射击一次,求同时击中9环以上(含9环)的概率;
(Ⅱ)若从甲、乙两运动员中只能挑选一名参加某项国际比赛,你认为让谁参加比赛较合适?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次运动会中甲、乙两名射击运动员各射击十次的成绩(环)如下:
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用茎叶图表示甲,乙两个人的成绩;
(2)分别计算两个样本的平均数
.
x
和标准差s,并根据计算结果估计哪位运动员的成绩比较稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环),如果甲、一两人中只有1人入选,计算他们的平均成绩及方差.问入选的最佳人选应是谁?
10 8 9 9 9
10 10 7 9 9

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两名射击运动员,甲命中10环的概率为
1
2
,乙命中10环的概率为p,若他们各射击两次,甲比乙命中10环次数多的概率恰好等于
7
36
,则p=
2
3
2
3

查看答案和解析>>

同步练习册答案