精英家教网 > 高中数学 > 题目详情
已知点A(2,0),B(0,2),C(cosα,sinα)且0<α<π
(1)若|
OA
+
OC
|=
7
,求
OB
OC
的夹角;
(2)若
AC
BC
,求cosα的值.
分析:(1)根据所给的点的坐标写出要用的向量的坐标,因为向量的模长是已知数值,代入坐标进行运算,得到关于角的关系式,结合同角的三角函数的关系,得到角α的值,从而得到向量夹角的值.
(2)根据所给的向量的坐标和向量垂直的条件,写出角的三角函数式之间的关系,通过三角变换得到要求的角的余弦值,本题主要解题思想是把两角之和和两角之积作为整体来处理.
解答:解:(1)∵|
OA
+
OC
|=
7

∴(2+cosα)2+sin2α=7
cosα=
1
2
,又α∈(0,π)

α=∠AOC=
π
3

又∵∠AOB=
π
2

OB
OC
的夹角为
π
6

(2)∵
AC
=(cosα-2,sinα)
BC
=(cosα,sinα-2)

又∵
AC
BC

cosα+sinα=
1
2

2cosαsinα=-
3
4

又由(cosα-sinα)2=1-2cosαsinα=
7
4
及cosα-sinα<0
得cosα-sinα=-
7
2

cosα=
1-
7
2
÷2=
1-
7
4
点评:本题是一个三角函数同向量结合的问题,是以向量垂直的充要条件为条件,得到三角函数的关系式,是一道综合题,在高考时可以以选择和填空形式出现,也可以以解答题形式出现.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(-2,0),B(2,0),若点P(x,y)在曲线
x2
16
+
y2
12
=1
上,则|PA|+|PB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区二模)在平面直角坐标系x0y中,已知点A(-
2
,0),B(
2
,0
),E为动点,且直线EA与直线EB的斜率之积为-
1
2

(Ⅰ)求动点E的轨迹C的方程;
(Ⅱ)设过点F(1,0)的直线l与曲线C相交于不同的两点M,N.若点P在y轴上,且|PM|=|PN|,求点P的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-2,0),B(2,0),如果直线3x-4y+m=0上有且只有一个点P使得 
PA
PB
=0
,那么实数 m 等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点A(-2,0),B (0,2
3
)
,C(2cosθ,sinθ),其中θ∈[0,
π
2
]

(1)若
AB
OC
,求tanθ的值;
(2)设点D(1,0),求
AC
 •  
BD
的最大值;
(3)设点E(a,0),a∈R,将
OC
 •  
CE
表示成θ的函数,记其最小值为f(a),求f(a)的表达式,并求f(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-2,0)、B(0,2),C是圆x2+y2=1上一个动点,则△ABC的面积的最小值为
2-
2
2-
2

查看答案和解析>>

同步练习册答案