(本题满分14分
已知椭圆:的离心率为,以原点为圆心,
椭圆的短半轴长为半径的圆与直线相切.
⑴求椭圆C的方程;
⑵设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆
于另一点,求直线的斜率的取值范围;
⑶在⑵的条件下,证明直线与轴相交于定点.
⑴;
⑵或;
⑶见解析
【解析】本题考查椭圆的几何性质,考查椭圆的标准方程,解题的关键是确定几何量之间的关系,利用直线与椭圆联立,结合韦达定理求解
(1)根据椭圆的性质,离心率得到参数a,c的关系,然后利用线与圆相切得到参数b的值,进而得到椭圆的方程。
(2)设出直线与椭圆的方程联立方程组,结合韦达定理,和判别式大于零得到直线的斜率的范围。
(3)表示直线ME的方程,以及结合点的坐标的对称关系,得到k的关系式,进而得到直线与轴相交于定点
解:⑴由题意知,
所以,即,
又因为,所以,
故椭圆的方程为:.-----------4分
⑵由题意知直线的斜率存在,设直线的方程为 ①
联立消去得:,
由得,
又不合题意,
所以直线的斜率的取值范围是或.---8分
⑶设点,则,
直线的方程为,
令,得,
将代入整理,得. ②
由得①代入②整理,得,
所以直线与轴相交于定点. ----------------14分
科目:高中数学 来源: 题型:
(本题满分14分)已知是给定的实常数,设函数,,
是的一个极大值点.
(Ⅰ)求的取值范围;
(Ⅱ)设是的3个极值点,问是否存在实数,可找到,使得
的某种排列(其中=)依次成等差数列?若存在,求所有的
及相应的;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年山东师大附中高三12月(第三次)模拟检测理科数学试卷(解析版) 题型:解答题
(本题满分14分)已知函数
(Ⅰ)求的单调区间;
(Ⅱ)如果当且时,恒成立,求实数的范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三第二学期第一次统考文科数学 题型:解答题
(本题满分14分) 已知正四棱锥P-ABCD中,底面是边长为2 的正方形,高为.M为线段PC的中点.
(Ⅰ) 求证:PA∥平面MDB;
(Ⅱ) N为AP的中点,求CN与平面MBD所成角的正切值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省高三上学期期中考试数学文卷 题型:解答题
(本题满分14分)已知函数的图像过点(1,3),且对任意实数都成立,函数与的图像关于原点对称.
(Ⅰ)求与的解析式;
(Ⅱ)若在[-1,1]上是增函数,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012届浙江省高三调研测试文科数学试卷 题型:解答题
(本题满分14分) 已知正四棱锥P-ABCD中,底面是边长为2 的正方形,高为.M为线段PC的中点.
(Ⅰ) 求证:PA∥平面MDB;
(Ⅱ) N为AP的中点,求CN与平面MBD所成角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com