精英家教网 > 高中数学 > 题目详情
(本题10分)已知函数
(1)利用函数单调性的定义,判断函数上的单调性;
(2)若,求函数上的最大值
(1)上单调递增。 (2)
本试题主要是考查了函数的单调性的证明以及运分段函数求解最值的综合运用。
(1)设
变形得到证明。
(2)由(1)可知,当时,(5分)

然后分情况求解各段的最值。
解:(1)设

(2分)
因为,所以,所以(3分)
所以上单调递增。(4分)
(2)由(1)可知,当时,(5分)

①若,则上单调递减,的最大值为(6分)
②若上单调递减,在上单调递增,(7分)

所以当时,的最大值为,(8分)
时,的最大值为(9分)
综上,(10分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数图象上一点P(2,f(2))处的切线方程为
(1)求的值;
(2) 若方程内有两个不等实根,求的取值范围(其中为自然对数的底);
(3)令,如果图象与轴交于,AB中点为,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(Ⅰ)求的单调区间;
(Ⅱ)证明:当时,
(Ⅲ)证明:当,且…,时,
(1)
(2) .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数.
(1)若上是增函数,求实数的取值范围;
(2)若的极值点,求上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数上可导,其导函数,且函数处取得极小值,
则函数的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在(0,1)上不是单调函数,则实数a的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知函数的图像经过点,曲线在点处的切线恰好与直线垂直.
(I)求实数的值;
(Ⅱ)若函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分15分)已知为常数,函数)。
(Ⅰ) 若函数在区间(-2,-1)上为减函数,求实数的取值范围;
(Ⅱ).设 记函数,已知函数在区间内有两个极值点,且,若对于满足条件的任意实数都有为正整数),求的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列关于函数f(x)=(2x-x2)ex的判断正确的是
①f(x)>0的解集是{x|0<x<2};
②f(-)是极小值,f()是极大值;
③f(x)没有最小值,也没有最大值.
A.①③ B.①②C.②D.①②③

查看答案和解析>>

同步练习册答案