【题目】如图,在△ABC中,已知∠ABC=45°,O在AB上,且OB=OC= AB,又PO⊥平面ABC,DA∥PO,DA=AO= PO.
(Ⅰ)求证:PD⊥平面COD;
(Ⅱ)求二面角B﹣DC﹣O的余弦值.
【答案】证明:(Ⅰ)设OA=1,则PO=OB=2,DA=1, 由DA∥PO,PO⊥平面ABC,知DA⊥平面ABC,
∴DA⊥AO.从而 ,
在△PDO中,∵PO=2,
∴△PDO为直角三角形,故PD⊥DO.
又∵OC=OB=2,∠ABC=45°,
∴CO⊥AB,又PO⊥平面ABC,
∴PO⊥OC,
又PO,AB平面PAB,PO∩AB=O,
∴CO⊥平面PAB.
故CO⊥PD.
∵CO∩DO=O,
∴PD⊥平面COD.
(Ⅱ)解:以OC,OB,OP所在射线分别为x,y,z轴,建立直角坐标系如图.
则由(Ⅰ)知,C(2,0,0),B(0,2,0),P(0,0,2),D(0,﹣1,1),
∴ ,
由(Ⅰ)知PD⊥平面COD,∴ 是平面DCO的一个法向量,
设平面BDC的法向量为 ,∴ ,∴ ,
令y=1,则x=1,z=3,∴ ,
∴ ,
由图可知:二面角B﹣DC﹣O为锐角,二面角B﹣DC﹣O的余弦值为 .
【解析】(Ⅰ)设OA=1,则PO=OB=2,DA=1,由DA∥PO,PO⊥平面ABC,知DA⊥平面ABC,可得DA⊥AO.利用勾股定理的逆定理可得:PD⊥DO.由OC=OB=2,∠ABC=45°,可得CO⊥AB,又PO⊥平面ABC,可得PO⊥OC,得到CO⊥平面PAB.得到CO⊥PD.即可证明.(Ⅱ)如图建立空间直角坐标系,点A为坐标原点,设AB=1,利用线面垂直的性质、向量垂直与数量积的关系得出两个平面的法向量,求出其夹角即可.
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos(x﹣ )﹣sin(x﹣ ). (Ⅰ)判断函数f(x)的奇偶性,并给出证明;
(Ⅱ)若θ为第一象限角,且f(θ+ )= ,求cos(2θ+ )的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y= (υ>0).
(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)
(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分图象如图所示,则y=f(x)的图象可由y=cos2x图象( )
A.向右平移 个长度单位
B.向左平移 个长度单位
C.向右平移 个长度单位
D.向左平移 个长度单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两种商品在过去一段时间内的价格走势如图所示,假设某人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计),那么他持有的资金最多可变为( )
A.120万元
B.160万元
C.220万元
D.240万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AD=AC,AB= DE,F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:
x | 1 | 2 | 3 | 4 | 5 |
y | 5 | 6 | 7 | 8 | 10 |
由资料可知y对x呈线性相关关系,且线性回归方程为 ,请估计使用年限为20年时,维修费用约为( )
A.26.2
B.27
C.27.6
D.28.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆W: ,过原点O作直线l1交椭圆W于A,B两点,P为椭圆上异于A,B的动点,连接PA,PB,设直线PA,PB的斜率分别为k1 , k2(k1 , k2≠0),过O作直线PA,PB的平行线l2 , l3 , 分别交椭圆W于C,D和E,F.
(1)若A,B分别为椭圆W的左、右顶点,是否存在点P,使∠APB=90°?说明理由.
(2)求k1k2的值;
(3)求|CD|2+|EF|2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,圆M的方程为x2+y2﹣8x﹣2y+16=0,若直线kx﹣y+3=0上至少存在一点,使得以该点为圆心,半径为1的圆与圆M有公共点,则k的取值范围是( )
A.(﹣∞, ]
B.[0,+∞)
C.[﹣ ,0]
D.(﹣∞, ]∪[0,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com