精英家教网 > 高中数学 > 题目详情
12.一个扇形的面积为3π,弧长为2π,则这个扇形中心角为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{2π}{3}$

分析 由扇形面积公式得θr=2π,$\frac{1}{2}$θr2=3π,先解出r值,即可得到θ值.

解答 解:设这个扇形中心角的弧度数是θ,半径等于r,则由题意得  θr=2π,$\frac{1}{2}$θr2=3π,
解得 r=3,θ=$\frac{2π}{3}$.
故选:D.

点评 本题考查扇形的面积公式,弧长公式的应用,得到θr=2π,$\frac{1}{2}$θr2=3π,是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列四个命题:
(1)函数f(x)=2x+1(x∈N)的图象是一条直线;
(2)函数$f(x)=\frac{1}{x}$在(-∞,0)时是减函数,在(0,+∞)也是减函数,所以f(x)在定义域上是减函数;
(3)f(x)=x2-2|x|-3的递增区间为[-1,0]和[1,+∞);
(4)若函数f(x)=ax2+bx+2与x轴没有交点,则b2-8a<0且a>0.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=4x-a•2x+1-6,x∈[0,1],
(1)若函数有零点,求a的取值范围;
(2)若不等式f(x)+3a+6≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,已知圆C的圆心为极坐标:C($\sqrt{2}$,$\frac{π}{4}$),半径r=$\sqrt{3}$.
(1)求圆C的极坐标方程;
(2)若过点P(0,1)且倾斜角α=$\frac{π}{6}$的直线l交圆C于A,B两点,求|PA|2+|PB|2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.对于实数a,b,定义运算“?”:a?b=$\left\{\begin{array}{l}{a}^{2}-ab,a≤b\\{b}^{2}-ab,a>b\end{array}\right.$,设f(x)=(2x-1)?(x-1),且关于x的方程f(x)-m=0恰有三个互不相等的实数根,则实数m的取值范围是(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l1:ax+y+a-1=0不经过第一象限,且l1⊥l2
(1)求证:直线l1恒过定点;
(2)求直线l2倾斜角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设数列{an}满足:a1=2,an+1=1-$\frac{1}{a_n}$,记数列{an}的前n项之积为Tn,则T2016的值为(  )
A.-$\frac{1}{2}$B.-1C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)=$\frac{x}{x+1}$,f1(x)=f(x),fn(x)=fn-1[f(x)](n≥2,n∈N*),则f(1)+f(2)+…f(2011)+f1(1)+f2(1)+f3(1)…f2011(1)=(  )
A.2009B.2010C.2011D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆的两个焦点为F1(-$\sqrt{5}$,0),F2($\sqrt{5}$,0),M是椭圆上一点,若MF1⊥MF2,|MF1||MF2|=8,则该椭圆的方程是(  )
A.$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{7}$=1C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

同步练习册答案